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ABSTRACT 

Objective 

To design and evaluate a general framework for interactive record linkage using a 

convenient algorithm combined with tractable Human Intelligent Tasks (HITs; i.e. micro 

tasks requiring human judgment) that can support reproducible data science.  

 

Materials and Methods 

Accurate linkage of real data requires both automatic processing of well-defined tasks 

and human processing of tasks that require human judgment (i.e., HITs) on messy data.  

We present a reproducible, interactive, and iterative framework for record linkage called 

VIEW (Visual Interactive Entity-resolution Workbench). We implemented and evaluated 

VIEW by integrating two commonly used hospital databases, the American Hospital 

Association (AHA) Annual Survey of Hospitals and the Medicare Cost Reports for 

Hospitals from CMS. 

 

Results 

Using VIEW to iteratively standardize and clean the data, we linked all Texas hospitals 

common in both databases with 100% precision by confirming 78 approximate linkages 

using HITs and manually linking 28 hospitals using HITs. 

 

Discussion 

Similarities in hospital names and addresses and the dynamic nature of hospital attributes 

over time make it impossible to build a fully automated linkage system for hospitals that 

can be maintained over time. VIEW is a software that supports a reproducible semi-

automated process that can generate and track HITs to be reviewed and linked manually 

for messy data elements such as hospitals that have been merged. 

 

Conclusion 

Effective software that can support the interactive and iterative process of record linkage, 

and well-designed HITs can streamline the linkage processes to support high quality 

replicable research using messy real data. 
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INTRODUCTION 

Secondary use of large existing databases for research is increasingly common.  

The important characteristics of such data are that (1) an extensive amount of data exists 

on the population served, (2) data are continuously generated, (3) data change over time 

as programs evolve and originate from multiple sources, and (4) data have varied levels 

of validity with data directly required for operations being the most valid.  These 

represent the “four Vs” of big data: volume, velocity, variety, and veracity, respectively.1  

Using big data to extract valuable information requires a tractable and reproducible data 

processing pipeline.  A critical step in the data processing pipeline is data integration. 

Often called record linkage or entity resolution, it presents a challenge when there is no 

common, error-free, unique identifier with which to identify records across databases 

pertaining to the same real-world entities.   

Much has been published about automatic record linkage of person level data.2–13 

This paper contributes to the literature by documenting the iterative process of 

developing a linkage algorithm and its application to hospital level data.  Documenting 

the process of linkage is important because researchers often rely on manual, ad hoc tools 

for data integration due to the lack of standardized approaches or appropriate software. 

Non-transparent record linkage is a major issue in replicable research. 

We present a systematic framework, VIEW (Visual Interactive Entity-resolution 

Workbench), for incrementally developing a tractable algorithm to link organization-level 

data.  VIEW can be used to develop a well-documented semi-automated process for 

linking two or more hospital datasets with no common identifiers. We evaluate VIEW in 
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a project that required the development and maintenance of a comprehensive hospital 

database across five different data sources with timely updates each year.  

SIGNIFICANCE 

Constructing useful measures for secondary data analysis to answer broad 

questions often requires the integration of data from multiple systems. For example, our 

project had to integrate data from five sources, which used a total of four independent 

identifiers for the providers, the Texas Provider ID (TPI), the National Provider ID (NPI), 

the Medicare provider ID, and a facility ID (FID).  In this paper, we only discuss the 

process for building a crosswalk from the MedicareID to the FID, which demonstrates the 

process best.  The other linkages were conducted using VIEW in similar ways.   

A major challenge in integrating hospital level data is that hospitals are not static 

entities but evolve over time (i.e., mergers, closings, name changes, address changes). 

Thus, maintaining a clean identifier system for all providers over time is challenging. To 

further complicate this issue, there may be multiple identifiers (i.e., federal, state, and 

local) used for providers often requiring a system to build a crosswalk between different 

identifiers when combining data from heterogeneous systems.  As a result, there is a 

pressing need to develop a reproducible process for standardizing and integrating 

multiple sources of provider level data. There are a variety of applications for such 

integrated data, including pay-for-performance programs and public reporting, as well as 

organizational-level quality assurance and performance tracking using big data.14–16   
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BACKGROUND 

The most common methods for linking individual-level data are probabilistic and 

deterministic record linkage.2–13 The probabilistic method scores a statistical probability 

of two records being a ‘true’ link based on a model developed typically using training 

data. Even though there are many different probabilistic methods in statistics and 

machine learning that currently investigate how to best develop the model given the data, 

the researcher must still determine two thresholds to group linkages into match, 

uncertain, or non-match once the data have been scored.3 In comparison, deterministic 

methods are rule-based, where the researcher specifies the rules under which the two 

records are considered a match (e.g., pairs that have exact match on name and address), 

uncertain (e.g., pairs with approximate match on name or address), or non-match (e.g., all 

other pairs). Often a stepwise approach is used to build the rules.11,12   

  Probabilistic methods tend to work better on complex data at the cost of less 

interpretable models. In comparison, simple deterministic methods are easier to 

implement and communicate when the linkage task is relatively simple, as in the case of 

linking hospitals.  The quality of matching results are comparable for both deterministic 

and probabilistic methods as long as the process for linkage is well developed.12,13 More 

importantly, data standardization and cleaning is important in both approaches but also 

very difficult to do top-down based on theory.17  VIEW includes methods to quickly 

standardize only the regularities in a given dataset with a bottom-up approach using the 

data at hand. 

To overcome the limitations of automatic algorithms in addressing real world 

problems,18 there has been increasing interest in interactive record linkage that better 
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document the human interaction during the linkage process.19,20 In particular, we present 

how to use well defined Human Intelligent Tasks (HITs; i.e. micro tasks requiring human 

judgment), to design effective human machine systems for record linkage.  Using HITs is 

common for processing big data because most tasks require both automatic processing of 

well defined tasks and human processing for tasks that require judgment.21 The 

importance of human interaction in linkage is demonstrated well in Bronstein et al.22  

where pregnancies from Medicaid data were linked to birth records via 11 manual steps. 

There were multiple uncertainties that needed human decisions to attain an overall match 

rate of 87.9%. With no human interaction, the match rate would be much lower.  

Ultimately, the goals of any approximate linkage method should include: 1) setting the 

match threshold conservatively to avoid the false matched pairs, 2) setting the potential 

match threshold liberally so all missed true matches are in the uncertain matched pairs 

and can be recovered during the manual resolution phase, and 3) keeping the number of 

uncertain pairs (i.e. HITs) to be reviewed manually at reasonable levels.   

DATA 

The main database is the 2013 provider ID information file that comes with the 

Hospital Form 2552-10 on the CMS website23 containing the MedicareID, the  name, and 

address of all providers (N=606 for Texas).  To this database, we linked the Texas 

Annual Survey of Hospitals from 2008 to 2013, which uses the FID.  It is a mandatory 

hospital survey administered by Texas Department of State Health Services working in 

collaboration with the American Hospital Association and the Texas Hospital 

Association.24 Some hospitals had multiple values for provider names in the survey 
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because names change over time and both the legal business name and DBA (doing 

business as) name were available.  Hence, there were a total of 800 different names that 

represented the 664 unique providers.   

 

 
Figure 1.  VIEW: Framework for iteratively developing a record linkage algorithm 

 

 

Data 
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processing

•in the first iterations, minimum.  After review in manuual refinement, add iteratively

•Data standardization

•Data Cleaning: Fixing erroneous data

Blocking 
(generate 

pairs)

•Determine the optimal blocking variable to reduce computation
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Repeat
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METHODS  

We first describe methods for measuring linkage quality used throughout the 

paper.  Then, we follow with a presentation of the six core steps of the proposed human 

machine process (Figure 1) and demonstrate each step using our example linkage study.  

Measuring Linkage Quality   

The main quality measures in linkage are recall, aka sensitivity, and precision 

(Figure 2).  Often, the application will determine the balance between recall and 

precision.  In general, setting stringent criteria will result in high precision and low recall 

whereas looser criteria will start to introduce incorrect matches reducing precision while 

increasing recall.  However, this is not a direct relationship, and carefully building more 

complex models can increase recall without much reduction in precision.  We only report 

recall in this paper because precision was 100% in our application. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑢𝑒 𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 𝑒𝑥𝑖𝑠𝑡
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑘𝑎𝑔𝑒𝑠 𝑓𝑜𝑢𝑛𝑑
 

Figure 2.  Recall & Precision 

   

Step 1: Data Selection   

The first step is to select the files to build the crosswalk and then to select the 

common attributes to be used in the matching process. Good attributes to use are 

variables that tend to be recorded consistently and have high distinguishing power (i.e. 

many unique values).  For example, with only two possible values, type of hospital (i.e. 

public or private) is a low power variable.  In comparison, with mostly unique values, 
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name is a high power variable.  However, names tend to have a lot of variation for the 

same entity, which decrease its usefulness.  The discriminatory power of identifiers can 

be quantified using the Shannon entropy.25 In our linkage, the common data attributes 

were provider name, city, zip code, and street address.  We dropped city because it had 

similar information as zip code, and the more granular data numerically coded was better.   

 

Step 2: Data Standardization and Cleaning 

Variation in the way that attributes are represented across data used to link 

hospitals can result from different coding methods (e.g. use of uppercase versus 

lowercase), the dynamic nature of the underlying attributes (e.g. renaming a hospital after 

a change in ownership), erroneous data (e.g. typos), or missing data.  Standardization of 

common data elements both in terms of formats (capitalization) and values (i.e. street to 

st) reduces the unnecessary variations in the data and significantly improves automatic 

linkage.  Numerically coded attributes using the same coding scheme work best. For 

example, zip code works well for linking organizations because it has high distinguishing 

power as well as low variation in common values. Nonetheless, developing well coded 

variables is time intensive and often linkage is carried out on raw data without the 

common coding by carrying out approximate matches. 

The most efficient method to standardizing and cleaning the data is to set up a 

data processing pipeline to easily add in standardization rules iteratively over time as 

problems are discovered in the data.  Setting up such a framework for processing big data 

is critical as it is difficult to know up front all the issues with any given dataset.  Thus, as 

researchers encounter different issues in the data, the ability to go back and add rules to 
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clean the data, then easily repeat the steps is essential to working efficiently with big data 

in a tractable manner.  In record linkage, this means that in the first iteration, there are 

likely to be no data cleaning or standardization rules because the researcher does not 

know the issues in the data yet.  Such rules will be developed and incorporated in 

subsequent iterations.   

Using computer code to automate data cleaning and standardization has several 

advantages compared to manually editing the data.  First, if the process is automated, 

then work will not be lost if rules need to be revised or deleted in subsequent iterations.  

In addition, the computer code serves as documentation of what was done. Such 

documentation is important for making research reproducible. And finally, using an 

automated process makes it simple to retract any steps that are later detected as incorrect 

during the process of working with the data. 

Two ways of effectively standardizing provider names quickly are to drop 

frequently used words (e.g. hospital) and to replace terms that are frequently abbreviated 

(e.g. center, ctr, cntr) with a standard set of consistent abbreviations.  VIEW provides a 

module that produces the frequent word list.  Detecting the commonly used abbreviations 

occurs iteratively during manual review of uncertain and non-matched records.   

In our linkage, basic standardization (i.e. using only lower case and removing all 

special characters) improved the recall rate to 51%.  Figure 3 and Table 1 are the final 

standardization we used for name and address after multiple iterations.  Note that the 

order of the standardization matters.  It was also important to have the last step where we 

use the original name when the standardized name becomes null (e.g. memorial hospital).  
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Using these standardizations, exact match on standardized names improved the recall rate 

to 67%.     

1. Drop the following words: inc, llp, llc, at, of, the, district, hospital, hosp 
2. Standardize the following words: 

• ctr or cntr to center 

• medical to med 

• tx to texas 

• branch to br 

• county to co 

• rehabilitation to rehab 

• university texas to ut 

• east texas med center to etmc 

• select specialty to ssh 
3. Drop the following words: med, center, (this was done after 

standardization so that ‘harbor hospital of southeast texas’ did not become 
‘harbor hospital of southetmc’. 

4. If the final stanadardized name has less than 5 characters, use the 
original name (e.g. memorial hospital) 

Figure 3.  Final Name Standardization Algorithm 

Original word Standardized to Ignore for 

approximate match 

lane ln X 

street st X 

boulevard, boulevard blvd X 

road rd X 

circle cir X 

drive dr X 

avenue ave X 

loop lp X 

ctr, cntr center  

3rd, 2nd third, second respectively  

highway, freeway, parkway hwy, fwy, pkwy respectively  

north, south, east, west n, s, e, w respectively  

Table 1. Final Address Standardization 

Step 3: Blocking   

The full comparison space is the Cartesian product of the two datasets being 

linked, majority of which are non-matches (e.g, 606*800=484,800 comparisons in our 

example).  To reduce the search space, one or more blocking variables are used to 
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compare only records that share the attribute.  Blocking can introduce problems when 

there are data errors or missing values in the blocking variable because the correct 

comparisons cannot be made.  Thus, it is common to use a multi-pass blocking algorithm 

to recapture those comparisons that are permanently lost in the first pass. Clearly, the 

blocking variable has direct impact on performance in terms of time and quality.     

In our study, zip code is the best blocking variable because it will break up the 

data into small number of hospitals in each zip code to be matched up with no missing 

data (Table 2).  Blocking on zip code reduced the number of comparisons from 484,800 

to only 1,752.  However, there were 37 entities with incorrect zip code, which had to be 

dealt with in the second pass. 

 Medicare data AHA Survey data 

Unique # of zip codes 407 418 

Mean # of hospital per zip code 2.2 3.0 

Max # of hospital per zip code 10 13 

Table 2.  Search Space 

Step 4: Scoring   

The next step is the pairwise scoring of all pairs within each block.  In the first 

iteration, only simple standardization and a simple scoring system (i.e., if all common 

attributes match exactly classify as a match, if at least one attribute match approximately 

classify as uncertain, otherwise classify as nonmatch) is used.  For most problems, this 

simple setup will result in a low match rate and a large number of uncertain matches.  In 

the first few iterations, you are scanning both the uncertain and nonmatch groups for 

regular patterns in the two dataset that you need to either standardize or use for scoring a 

pair.  As you spot them, you add the standardization code and the scoring code to be 

more complex and rerun until there are no more improvements you can do automatically.  
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The goal is to iteratively develop both the standardization and scoring algorithm to 

capture regularities in the data automatically as true matches and reduce the uncertain 

group to include only the difficult cases that require human judgment.  In addition, you 

should be reviewing the nonmatch group to confirm that these are indeed nonmatches.  

Typically, you will spot required standardizations (e.g. using same abbreviations such as 

East Text Medical Center to ETMC) in the nonmatch group in the beginning.   

Probabilistic record linkage methods develop statistical models for automatic 

scoring using training data that have been manually labeled.  Then the researcher 

determines the two thresholds for match, uncertain, and nonmatch in the final score.  

However, for reasonable sized data, using simple rule based deterministic scoring 

methods is more tractable and interpretable and works comparably. Deterministic 

methods are also easier to control precisely what you group for manual review versus 

automatic linkage. 

In our linkage, we allowed for deterministic approximate matching on both name 

and address as detailed in Figure 4 which further improved the recall to 88%.  The 

algorithm, builds a non-directional graph with each entity in one database connected to 

all other entities in the other database in the same zip code.  Then each link is scored on a 

priority of 1 to 6 based on the similarity of names and addresses.  If both name and 

address does not match at all, the link is deleted.  As a final step, for each pair of entities 

only the closest link is kept.  That is if there are two names, and one matches exactly, 

only the exactly matched name is considered.  Then the main criteria used for automatic 

linkage was to only allow for linkage that were 1-to-1 linkages in the remaining graph.  
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Any linkages that resulted in more than 1 mapping was kicked out for next iteration.  The 

importance of 1-to-1 mapping criteria for automatic linkage is discussed later.   

If exact match on standardized name and standardized address then score=1 
Else if exact match only on standardized name then score=2 
Else if exact match only on standardized address then score=3 
Else if approximate match on standardized name and standardized address then 
score=4 
Else if approximate match only on standardized name then score=5 
Else if approximate match only on standardized address then score=6 
Else score=infinity 
 
Where approximate standardized name match means dice_coefficient(name1, 
name2)>=2/3 
 
Where approximate standardized address match means dice_coefficient ( 
drop(st_addr1), drop(st_addr2) )>=2/3 and drop(st_addr) means to drop the 8 words in 
Table 2. 
 
After all pairs have been scored, each entity is matched to the closest entity from the 
other database.   
 
Then keep only 1-to-1 matches.  
Pass all unmatched entities from both databases to the next pass. 

Figure 4:  Scoring Algorithm 

VIEW makes it easy to add in customized SAS code for approximate match on 

each variable and provide macros for counting the number of common words and the dice 

coefficient of common words.  The dice coefficient is commonly used to measure the 

similarity of sets and is defined as two times the number of common words over the total 

number of words.  The threshold of 2/3 for the dice coefficient can account for addresses 

having fewer details.  For example, the dice coefficient for ‘865 deshong’ and ‘865 

deshong 5th floor’ is 2*2/6=2/3. Of the 521 matches made, 40% were exact match on 

std_name and std_addr, 30% were exact match on only std_name,  22% were exact match 

on std_addr, with the remaining 8% being an approximate match of some kind.  These 41 

approximate matches were generated as HITs and confirmed manually.  There were two 
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in the HITs that required further investigation outside the databases to confirm as a 

correct match. 

 

Step 5: Second Iteration   

You can add as many block/score/review pass as needed to recapture any matches 

not compared in a particular blocking pass.  Typically, in subsequent passes you are only 

processing data that have not been linked in the previous pass.  This kind of divide and 

conquer method is very effective for working with big data. 

In our linkage, after the first pass blocking on zip code and allowing for 

approximate match on standardized name and address for 1-to-1 matches, there were 85 

MedicareIDs and 171 FIDs that were not matched.  Given the small numbers, we ran a 

second pass without blocking by linking any records that were an exact match on 

standardized name (43 matches) or standardized address (12 matches).  All except 3 

matches were 1-to-1 matches. 13 were both name and address match while 39 only 

matched on one.  We generated the 39 as HITs to be confirmed for accuracy.  All except 

two of these were matches with different zip code due to an error in one of the datasets.  

This improved the recall to 97%.   

 

Step 6: Manual Review 

Once automatic linkage is developed, the program should generate three separate 

outputs, one for confirmed automatic matches, one for the potential matches, and one for 

any entities that did not link to anything.  The potential matches are HITs that are output 

into an excel file.  These HITs are manually resolved into another excel sheet so that 
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human judgment can be incorporated back into the process as well as documented.   

Manual refinement can occur at the end of any block/score pass. 

We had one manual review step at the end.  After the second pass, we had 33 

MedicareIDs and 105 FIDs that were still not matched.  These were output as HITs to be 

matched manually.  We easily found 28 matches manually. Of the 6 remaining, 3 were 

duplicate records and 3 were those that did not participate in the survey.       

RESULTS  

Software for Linking Data 

We have developed and released VIEW under GNU license to facilitate replicable 

methods in linking data.  VIEW is a set of general SAS macro codes that implements the 

record linkage described above for deterministic methods. It can be easily extended to 

perform probabilistic methods as well.  Researchers can specify and control many aspects 

of the linkage such as how to standardize and score data by adding customized SAS code 

to designated files.  As in our survey data, often entities have multiple names.  Thus, 

VIEW provides an easy mechanism for properly managing multiple rows per entity so 

that if any of the names match the correct linkage is made by keeping the primary ID the 

same.  More details can be found on the VIEW website.26   

 

MedicareID to FID 

Figure 5 depicts the full process for using VIEW to link the MedicareID to FID.  

After using VIEW to iteratively standardize and clean the data, we (1) automatically 

linked 493 providers, both exact and approximate match, (2) manually linked 28 

providers, (3) confirmed valid no links for 6 providers, and (4) confirmed approximate 
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links for 78 providers and no link for 1 approximate link.  Most of the linkages that were 

manually linked using HITs could never be coded as automatic matching due to the 

complexity and insufficient information in the database.  We had to use additional 

information found on the internet to confirm the links.  To obtain 100% precision, this 

application used conservative criteria for automatic matching leading to more manually 

reviewed HITs.    

 
 

Figure 5.  Medicare ID to FID linkage process 

Manually Match: HITs (34)

Second Pass: no blocking
exact match on name and/or address

Medicare remaining (33) AHA Survey remaining (105 rows)

First Pass: block on zip code
match approximately on name & address

Medicare remaining (85) AHA Survey remaining (171 rows)

Initial Input files

Medicare (606)
AHA Survey (800 rows 

representing 664 unique providers)

Recall: 88% 
Total Matched: 521 

HITs reviewed: 41 

Recall: 97% 
Total Matched: 52 + 520 

HITs reviewed: 38 

Recall: 100% 
Total Matched: 28 + 572 
Medicare duplicates: 3 
Medicare not in AHA: 3 

AHA not in Medicare: 64 
 

1 HIT returned due to mismatch.  +1 in both database 
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DISCUSSION 

1-to-1 link as criteria for automatic matching 

Of all possible matches, determining the critical conditions that confirm an 

automatic match is important but difficult.  In our study, we found that a clean 1-to-1 link 

can confirm a match automatically whereas links that have multiple matches in the 

database was a signal for potential issues with similar standardized names among 

different entities or multiple providers located on the same street.  This is because the 

chances of a provider in each of the databases being an exact 1-to-1 match purely by 

chance is negligible given the possible range of values.12 Thus using the 1-to-1 match 

criteria is a good rule for protection against false matches resulting from reducing too 

much variation through standardization such that two different providers have the same 

standardized name.  These errors show up as an N-to-1 match, and need human 

judgment.  This is intuitive in that, in sparse data space linkages are easy where as in 

dense data spaces (i.e., many entities with similar names) linkages require more attention.   

 

Subtle differences in entities 

There are differences in how an entity is defined in different hospital ID systems.  

For example, the FID used in the survey data is closely associated with the hospital 

licensing number.  Any change made to the provider license over time is reflected in the 

FID and the FID is managed manually by state staff to ensure high quality data.  Thus, 

we can track changes in names, addresses, or closures over time by tracking the same 

FID.  This means that same health systems can have one or more FIDs depending on how 

they are licensed.  On the other hand, the MedicareID is for billing, and an entity is a 
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Medicare provider, which may or may not correspond to their licensed structure. The 

most common ID system being used for hospitals, NPI, often have multiple IDs for one 

health system making entity resolution very difficult.  In our linkage, the Medicare data 

had two entities from one health system with different zip codes that were adjacent 

(walking distance), but on the same street (different street number).  In comparison, the 

survey data only had one entity from the same hospital system.  This was one of the 

linkages we had to investigate beyond the data at hand.  Based on the number of licensed 

beds in the survey and their website, we concluded the correct linkage. 

 

Same name or address for different entities   

A small number of providers have the same name even when they are different 

entities.  Most of these are hospitals in the same system in different locations with 

separate licenses.  In the survey data, we had 6 providers, which had the same name for 

multiple entities.  To differentiate them, we added the city name to the provider name.  In 

addition, the standardization we used made both ‘University Medical Center’ and 

‘University Hospital’ become ‘University’.  Thus, exact matching on names, can lead to 1 

erroneous match.  However, since these were hospitals in two different zip codes, these 

providers were properly matched to ‘University Medical Center: Lubbock’ and 

‘University Health System’ respectively when we blocked on zip code before scoring.   

There were many providers on the same street but in combination with street 

number and provider name, these did not cause problems.  There was a pair of providers 

that had both a psychiatric license and an acute care license at the exact same address in 

the survey.  There were also two in the Medicare data, which we could match up 
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manually.  ‘SSH South Dallas’ is located on the 4th floor of Methodist Charlton Medical 

Center, which also caused confusion and required human judgment. 

 

Limitations 

The manual work in record linkage is inherently dependent on the data to be 

linked.  Both errors in data as well as gaps in how the same entity is represented in the 

different databases requires iteratively interacting with the data, detecting these patterns, 

and coding these patterns into the process to clean the data.  VIEW is setup to make this 

process more efficient and tractable, but cannot replace the required hard work for 

replicable research. 

 

CONCLUSION 

Similarities in provider names and addresses, the dynamic nature of hospitals over 

time, and the subtle differences in entities make it impossible to build fully automated 

hospital linkage system.  However, manually managing data linkages for even a small 

number, particularly over time, is inefficient, could lead to human error, and difficult to 

replicate.  Thus, effective software that can support the interactive and iterative process 

of record linkage and well-designed HITs streamline data linkage processes supporting 

high quality replicable research using big data. 
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