
PHPM672 (Kum) 1/22/2020

Coding Guidelines

Hye-Chung Kum
Population Informatics Research Group

http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Course URL:
http://pinformatics.org/phpm672

What we are going to learn

 Big Picture
 How to avoid code confusion and

associated programming errors.
 Common pitfalls.
 Programming Style Guidelines.
 Basic ideas behind good programming

methodologies and good programming
etiquette.

1

2

PHPM672 (Kum) 1/22/2020

Why are your programming habits
SO IMPORTANT?
 We’ll talk about this over and over, so this is

just a first assault!
 Programming done poorly is almost

worthless:
◦ You won’t be able to understand what you

programmed just last week,
◦ Others won’t be able to understand what you

tried to accomplish,
◦ And neither you nor anyone else can FIX your bad

code. So ……
◦ The time to develop good habits is NOW!

Outlining and Sentence Diagrams
 Remember when your English teacher…(Here it

comes- this is one of those “when I was younger
lectures…!”)

 So, here are my notes for what I want to tell you:
◦ Planning is important…to?

 You and the people you interact with!
◦ Planning saves time…why?

 Outcomes trump effort
◦ Planning is not easy…why?

 Requires crystal clear thinking (computers only know 0/1)
 Requires re-thinking
 Sometimes requires throwing stuff away!

◦ Planning can be irritating
 Not making progress!

3

4

PHPM672 (Kum) 1/22/2020

What does this (planning) mean vis
a vis programming?
 Think “top-down”

◦ Design the program before you code.
◦ Break the problem down into small steps
1. State the problem clearly.
2. Define the inputs and outputs
3. Describe the algorithm:

 Psuedocode, flow charts, or even comments!
4. Translate the steps to SAS code
5. TEST EACH STEP on a small version
 Look at memory (table) after each step
 proc print data=fn(obs=10); where condition

INPUT
PROGRAM

OUTPUT

Programming
 OUTPUT : Know what you want
 INPUT : what you have
 Intermediate results: What you need
 Program: change what you have (INPUT) to

what you need (intermediate results. Often
more than one level) to what you want (OUTPUT)

5

6

PHPM672 (Kum) 1/22/2020

File format

 text vs word?
 html
 How do you create text files?
 What is a file extension?

SAS online manual

 https://documentation.sas.com/?cdcId=p
gmsascdc&cdcVersion=9.4_3.5&docsetId
=pgmsashome&docsetTarget=home.htm
&locale=en

 Google to get help
 Stackoverflow

◦ https://stackoverflow.com/questions/529206
19/proc-print-and-proc-means

7

8

PHPM672 (Kum) 1/22/2020

Basics of Programming: SAS
 data step

◦ Row at a time
 proc step

◦ Full table
 libname: directory location (folder)

◦ No libname: temporary data
 run; (missing last results)
 ; (I am done. Can be more than one line)
 log & lst (html): computer communicating back with you what

happened
◦ Learn to READ the log

 comments
◦ /* comments */
◦ * line comments;
◦ Length limit 256. If you are using it for long lines pay attention to log

for messages.

9

10

PHPM672 (Kum) 1/22/2020

Programming Etiquette

Readable Programs
 Whitespace

◦ Grouping
◦ Indentation
 to show control flow

 Documentation
◦ Naming
◦ Comments

 Modular Code
◦ Break large blocks into

smaller pieces
◦ Use sub-routines or functions

(more later)

Write programs for
people first,
computers second.
-- Steve McConnell

Will you be able to
read and understand
your own code six
months from now?

11

12

PHPM672 (Kum) 1/22/2020

Whitespace
Use indentation to show logical structure

Which script is more readable?

x = 3;

if x < 3 then y = 3;

else y = 5;

x = 3; if x < 3 then y = 3; else y = 5;

or

Documentation
Use meaningful names

Which is more readable?

currID = CustomerID(custName);

currAccounts = BankAcct(currID);

mainAcct = max(find(currAccounts)~=0);

currBalance = mainAcct.balance;

xx = yyy(x);

xxx = PinkFlamingo(xx);

x4 = max(find(xxx)~=0);

floyd = x4.balance;

or

13

14

PHPM672 (Kum) 1/22/2020

Documentation
use comments to clarify meaning
 The first comment at the beginning of the

script or function should describe what the
script or function does.

 Approximately one comment per group of
commands is about right.

 Avoid comments which just repeats what
the associated code does.

 Use comments to document tricky code
 Use comments to give credits
 Did you see what google did on the csv file?

15

16

PHPM672 (Kum) 1/22/2020

How is lab 2 coming along?

Lab 2 & Assignment 2: Objective

 To write conditional logic codes
 Subset columns (variables) from a table
 Subset rows (observations) from a table
 Recode, rename variables and calculate

new variables
 Label variables and values

17

18

PHPM672 (Kum) 1/22/2020

Label variables
 SAS

◦ label var1 = “LABLE”;

Label values
 SAS: define format, then use in data step

proc format;

value fname

val1= “LAB1”

val2= “LAB2”;

* inside data step;

format var1 fname.

19

20

PHPM672 (Kum) 1/22/2020

Label Var vs Value

 Labeling variable
◦ Give a more human friendly name to the

variable name.
◦ Same as bcigever (the computer friendly

name for the variable used in the programs)
◦ Stored in the header information for the

table

label bcigever=“Ever smoked”;

Name Type Size Value

bcigever int8 1 byte 1 or 0

Label Var vs Value
 labeling value

◦ Give a more human friendly name to the
variable value.

◦ Same as 1(=TRUE) or 0(=FALSE)
◦ internally, the computer stores 0 or 1
◦ But, when printing the values for humans,

the computer uses the format you
created and designated to use for this
variable.

◦ Can be used on multiple variables
◦ It can be permanent (if done in the data

step) or temporary (if done in proc steps)
◦ The format must be created BEFORE use
◦ Stored in the header information for the

table

proc format;

value bool
1= “TRUE”

0= “FALSE”;

* inside data step;
data outfile;

set infile;

format bcigever bool.;

* Removing a format;
data outfile;

set infile;

format bcigever;

Name Type Size Value

bcigever int8 1 byte 1 or 0

21

22

PHPM672 (Kum) 1/22/2020

Data Step

libname data "D:\HPM-Users\kum\phpm672\lab2\data";

data outfn;

set infn;

…code…

data mynsduh;

set data.nsduh;

…code…

23

24

PHPM672 (Kum) 1/22/2020

Subset columns (variables)

 SAS
◦ Three places possible
 Reading in, writing out, during datastep

◦ keep, drop

data mynsduh;

set data.nsduh (keep=var);

data mynsduh;

set data.nsduh (drop=var);

Calculate new variable (assignment)

 SAS (in data step)
◦ var1 = 1 ; * assignment;

◦ num1=.; * numeric missing value;

◦ str1=“”; * string missing value;

◦ Gender=1;

◦ Gender=F;

◦ Gender=“F”;

◦ Gender=‘F’;

25

26

PHPM672 (Kum) 1/22/2020

Rename existing variable

 SAS (in data step)
◦ Depending on where you do this, different

behavior
◦ rename oldvar=newvar

Reminder
 Make sure to understand lab 2

◦ You MUST submit programs, logs, and output
along with assignment 2

◦ This is how you will LEARN
◦ Most IMPORTANT part of class

 Dataset(s) you want to use through out the
class
◦ Flu dataset
◦ Texas Inpatient Public Use Data File (PUDF)
 http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpu

df.shtm

27

28

PHPM672 (Kum) 1/22/2020

Swap x1 & x2
 Write the code in SAS

Few tricks
 Divide & Conquer

◦ Write code to do small things.
◦ Combine the small pieces

 Look at memory (table) after each step
◦ proc print data=fn(obs=10); where condition

 Test your code!
◦ THINK about your expected output. Then check.

 Become good with an editor
◦ emacs, vi, internal editors
◦ copy & paste/find & replace

 Regular expression/ wild card
◦ *.sas; [optional]

 grep expression files: find things in text files
 diff fn1 fn2: compare two programs

29

30

