
PHPM672 (Kum) 4/1/2020

Functions (Macros)
Functions and Workspaces: Variables
Functions (Macros)
Why Functions (Macros)

Hye-Chung Kum
Population Informatics Research Group

http://research.tamhsc.edu/pinformatics/
http://pinformatics.web.unc.edu/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.tamhsc.edu/phpm672

Programming
 Reusable code
 If you could not reuse code, writing exact

steps for doing anything reasonable (usually
takes MANY MANY lines of code) would take
too much effort

 Programming works because
◦ you write functions, small building blocks, that do

small defined tasks correctly given certain input
(parameters)

◦ Then compose these functions together to carry
out the complex task

1

2

PHPM672 (Kum) 4/1/2020

Example mini-computer

 5 * 3 = ?
◦ Add 5
◦ Add 5
◦ Add 5

CPU (Processor)
 Instruction set (2 bit)

◦ 00: Save to

◦ 01: Retrieve from

◦ 10: Add

◦ 11: Subtract

Address Instruction Operand

00 10 0101

01 10 0101

10 10 0101

RAM

00100101

01100101

10100101

…

Example mini-computer

Function multiply(a, b)

answer=0;
do i=1 to b;

answer=answer+a;
end;
return answer;

RAM

1 001000101

2 011110101

3 101010101

…

binary code

1 001010101

2 101100101

…

• Load the function called
multiply: find, copy, and
execute binary code here

• Pass the appropriate
values for function
parameters (a & b)

• When done, get the
returned value

3

4

PHPM672 (Kum) 4/1/2020

Why use Functions?
 Top-down design

 Break a complex problem into simpler manageable
problems

 Solve simpler problems
 Connect simple solutions to solve original problem

 Testing strategy
 Call function with different inputs to find bugs in

algorithm
 Small components tested individually
 Connect components later (system integration)
 Try testing 10,000 lines of script code without

functions !?!

Why use Functions?
 Encapsulation

 Black box programming
 Hides internal details of algorithm

from users
 Users typically only care about using

the function to get results.
◦ Isolates computations, protects

variables
 Interaction through arguments

◦ Separates interface and
implementation
 Interface: what a function does
 Implementation: how a function

does it

Function Body
(Implementation)

Function
Declaration

(how to call & use
this function)

In Out

5

6

PHPM672 (Kum) 4/1/2020

Why use Functions?

 Code reuse
◦ Solve a problem once
◦ Reuse your solution for similar problems

 Avoids repetitive typing
◦ Consistency
◦ Reduce Mistakes
◦ Maintenance
 Easier to fix one function than find and fix all

locations of cut & paste code.

Why use Functions?

 Code sharing
◦ Share your solution to a problem with others.
◦ Collaboration
 Team, organization, world

◦ Another programmer only needs to know
your function interface and behavior to use it.

◦ Get solution from someone else
 (and get caught easily if it’s an assignment)

7

8

PHPM672 (Kum) 4/1/2020

Reusable Code Types
 Invocation (calls/runs the function)

◦ Resolves variables (use value of the named
variable) at run time

◦ When the variable is resolved matters
◦ SAS built in functions : month(date);
 Parameter (input): date
 Function name: month
 Return value (output): month of the given date

 Textual find & replace
◦ SAS Macros (macro preprocessor)

SAS Macro (%)

SAS code
with Macro
Statements

Standard SAS
statements

Macro
Preprocessor

 Macro variables
 Macro functions (macros) : not normally

called functions

9

10

PHPM672 (Kum) 4/1/2020

Assignment 6 Objectives

 Read and write SAS macro variables
 Read, use, and modify SAS macro

functions

What is a workspace?

 The workspace is the set of variables that
has been collected or instantiated during
a session

 Session: one run of SAS (the time that you
have been using SAS)
◦ Batch mode: during the one run

 The two main workspace in SAS
◦ SAS tables
◦ Macro variables

11

12

PHPM672 (Kum) 4/1/2020

Local vs Global Variables

 Based on scope of variable
◦ Scope= workspace

 Global variables
◦ Valid in all workspace

 Local variable
◦ Valid in only the local

workspace
◦ For example inside a function

or Macro

Function Body
(Implementation)

Function
Declaration

(how to call & use
this function)

In Out

Macro Variables (older version)
 The name of a macro variable can be from

one to eight characters.
 The name must begin with a letter or an

underscore.
 Only letters, numbers, or underscores can

follow the first letter.
 The content of macro variable can be up to

32K (in version 7, the limit is 64K).
 No macro variable can begin with SYS.
 No macro variable can have the same name

as a SAS-supplied macro or macro function

13

14

PHPM672 (Kum) 4/1/2020

Macro Variables
* Define a global macro variable;

%let varname = value;

* Use a defined macro variable;

keep &varname;

title “&varname”; * must be double quotes;

* Resolves to be identical to;

keep value;

title “value”;

* Try examples;

Evaluating Expressions

 http://www.ats.ucla.edu/stat/sas/semina
rs/sas_macros_introduction/

* Integer arithmetic;

%let macro_var = %eval(expression);

%let age=%eval(5+3);

Myage=&age;

Myage=8;

* If float;

%let macro_var = %sysevalf(expression);

%let age=%sysevalf(5.5+3);

15

16

PHPM672 (Kum) 4/1/2020

Moving data between
Macro Variable & SAS Tables

 Create/reassign macro_var_name
 Same as %let except, can take values from sas table
 Value could be

◦ A variable from a sas dataset
◦ Constant

 Assigns the value at the end of the step
◦ Run
◦ Proc & Data

 Symget vs &
◦ When the variable is resolved

CALL SYMPUT (“macro_var_name”, value);

CALL SYMGET (“macro_var_name”);

Macro Functions
 Pro: Reusable code

◦ Allows you to write a set of sas statements
once, and then use them over and over again

 Con: more complicated code can lead to
more difficulty in debugging
◦ You MUST write modular code
◦ First, write your program in normal SAS code
◦ Test that it works
◦ Then convert to SAS Macro
◦ Test that the macro works

17

18

PHPM672 (Kum) 4/1/2020

Macro Functions
* Define a macro;

* The macro parameters are LOCAL macro variables to the
macro function;

%macro macro_name [(macro_parameters)];

macro_body

%mend [macro-name];

* Invoke a macro that has been defined;

%macro_name [(macro_parameter_name=value)];

* Both syntax is OK;

%macro_name [(value)];

* Try examples. Assignment 4;

Jargon
 Function Parameters

◦ The variables declared in the function interface
◦ dob & dt are local macro variable names

 Function Arguments
◦ The actual values supplied when the function is called.
◦ birth is a variable name from an actual table

%macro age (dob, dt);

.. body of macro function;

%mend;

%age (birth, mdy(1/1/2014));

Input Parameters

Input Arguments

19

20

PHPM672 (Kum) 4/1/2020

Jargon
 Function Parameters

◦ The variables declared in the function interface
◦ dob & dt are local macro variable names

 Function Arguments
◦ The actual values supplied when the function is called.
◦ birth is a variable name from an actual table

%macro age (dob, dt);

.. body of macro function;

%mend;

%age (dob=birth, dt=mdy(1/1/2014));

Input Parameters

Input Arguments

Macro Conditional Logic
* Inside the macro function;

%if condition %then %do;

* if body code;

[%end; %else %if condition %then %do;

* else if body code;]

%end;

* Try examples;

21

22

PHPM672 (Kum) 4/1/2020

Macro Loops
* Inside the macro function;

%do i=istart %to iend;

* if body code;

%end;

* Try examples;

Debugging Macros
 MPRINT
 SYMBOLGEN
 MLOGIC
 %put
 %include

◦ config.sas

Options MPRINT MLOGIC SYMBOLGEN;

* Look at log;

23

24

PHPM672 (Kum) 4/1/2020

Built in Macro Variables
 SAS supplied Macro variables

◦ %put _all_;
◦ %put _automatic_;
◦ %put _user_;
◦ %put _local_;
◦ %put _global_;

 SAS supplied variables
◦ _numeric_;
◦ _character_;
◦ _all_;

Function Review

 Functions
◦ Creating a function
◦ Writing a function
 Function Rules

◦ Calling a function
 Parameters vs. Arguments

◦ Scope
 Functions
 Variables

25

26

PHPM672 (Kum) 4/1/2020

Programming …
Read.
Watch.
Do.
Repeat doing until
you get the hang of it.

From Assignment 6 on …
 Grading for style

◦ Consistent style
◦ Readable beautiful code
◦ Good indentation
◦ Good line breaks
◦ Variable names
◦ Comments

 For full grade: when you are done, go
back and “EDIT” to make it readable and
consistent before submission

27

28

PHPM672 (Kum) 4/1/2020

Assignment 6

 Objectives
◦ Read and write SAS macro variables
◦ Read, use, and modify SAS macro functions

 Lab 6
◦ Start doing in class

Recoding
 It is perfectly fine to overwrite variable value in recoding.

◦ acceptable and RECOMMENDED coding
 county=compress(county)

◦ It means take value from county, compress it, than save
the new value into the county variable and overwrite
what was there.

◦ So no need for the next three lines.*clear blanks in county names;

ncounty=compress(county);

drop county;

rename ncounty=county;

29

30

