
PHPM672 (Kum) 4/1/2020

Functions (Macros)
Functions and Workspaces: Variables
Functions (Macros)
Why Functions (Macros)

Hye-Chung Kum
Population Informatics Research Group

http://research.tamhsc.edu/pinformatics/
http://pinformatics.web.unc.edu/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.tamhsc.edu/phpm672

Programming
 Reusable code
 If you could not reuse code, writing exact

steps for doing anything reasonable (usually
takes MANY MANY lines of code) would take
too much effort

 Programming works because
◦ you write functions, small building blocks, that do

small defined tasks correctly given certain input
(parameters)

◦ Then compose these functions together to carry
out the complex task

1

2

PHPM672 (Kum) 4/1/2020

Example mini-computer

 5 * 3 = ?
◦ Add 5
◦ Add 5
◦ Add 5

CPU (Processor)
 Instruction set (2 bit)

◦ 00: Save to

◦ 01: Retrieve from

◦ 10: Add

◦ 11: Subtract

Address Instruction Operand

00 10 0101

01 10 0101

10 10 0101

RAM

00100101

01100101

10100101

…

Example mini-computer

Function multiply(a, b)

answer=0;
do i=1 to b;

answer=answer+a;
end;
return answer;

RAM

1 001000101

2 011110101

3 101010101

…

binary code

1 001010101

2 101100101

…

• Load the function called
multiply: find, copy, and
execute binary code here

• Pass the appropriate
values for function
parameters (a & b)

• When done, get the
returned value

3

4

PHPM672 (Kum) 4/1/2020

Why use Functions?
 Top-down design

 Break a complex problem into simpler manageable
problems

 Solve simpler problems
 Connect simple solutions to solve original problem

 Testing strategy
 Call function with different inputs to find bugs in

algorithm
 Small components tested individually
 Connect components later (system integration)
 Try testing 10,000 lines of script code without

functions !?!

Why use Functions?
 Encapsulation

 Black box programming
 Hides internal details of algorithm

from users
 Users typically only care about using

the function to get results.
◦ Isolates computations, protects

variables
 Interaction through arguments

◦ Separates interface and
implementation
 Interface: what a function does
 Implementation: how a function

does it

Function Body
(Implementation)

Function
Declaration

(how to call & use
this function)

In Out

5

6

PHPM672 (Kum) 4/1/2020

Why use Functions?

 Code reuse
◦ Solve a problem once
◦ Reuse your solution for similar problems

 Avoids repetitive typing
◦ Consistency
◦ Reduce Mistakes
◦ Maintenance
 Easier to fix one function than find and fix all

locations of cut & paste code.

Why use Functions?

 Code sharing
◦ Share your solution to a problem with others.
◦ Collaboration
 Team, organization, world

◦ Another programmer only needs to know
your function interface and behavior to use it.

◦ Get solution from someone else
 (and get caught easily if it’s an assignment)

7

8

PHPM672 (Kum) 4/1/2020

Reusable Code Types
 Invocation (calls/runs the function)

◦ Resolves variables (use value of the named
variable) at run time

◦ When the variable is resolved matters
◦ SAS built in functions : month(date);
 Parameter (input): date
 Function name: month
 Return value (output): month of the given date

 Textual find & replace
◦ SAS Macros (macro preprocessor)

SAS Macro (%)

SAS code
with Macro
Statements

Standard SAS
statements

Macro
Preprocessor

 Macro variables
 Macro functions (macros) : not normally

called functions

9

10

PHPM672 (Kum) 4/1/2020

Assignment 6 Objectives

 Read and write SAS macro variables
 Read, use, and modify SAS macro

functions

What is a workspace?

 The workspace is the set of variables that
has been collected or instantiated during
a session

 Session: one run of SAS (the time that you
have been using SAS)
◦ Batch mode: during the one run

 The two main workspace in SAS
◦ SAS tables
◦ Macro variables

11

12

PHPM672 (Kum) 4/1/2020

Local vs Global Variables

 Based on scope of variable
◦ Scope= workspace

 Global variables
◦ Valid in all workspace

 Local variable
◦ Valid in only the local

workspace
◦ For example inside a function

or Macro

Function Body
(Implementation)

Function
Declaration

(how to call & use
this function)

In Out

Macro Variables (older version)
 The name of a macro variable can be from

one to eight characters.
 The name must begin with a letter or an

underscore.
 Only letters, numbers, or underscores can

follow the first letter.
 The content of macro variable can be up to

32K (in version 7, the limit is 64K).
 No macro variable can begin with SYS.
 No macro variable can have the same name

as a SAS-supplied macro or macro function

13

14

PHPM672 (Kum) 4/1/2020

Macro Variables
* Define a global macro variable;

%let varname = value;

* Use a defined macro variable;

keep &varname;

title “&varname”; * must be double quotes;

* Resolves to be identical to;

keep value;

title “value”;

* Try examples;

Evaluating Expressions

 http://www.ats.ucla.edu/stat/sas/semina
rs/sas_macros_introduction/

* Integer arithmetic;

%let macro_var = %eval(expression);

%let age=%eval(5+3);

Myage=&age;

Myage=8;

* If float;

%let macro_var = %sysevalf(expression);

%let age=%sysevalf(5.5+3);

15

16

PHPM672 (Kum) 4/1/2020

Moving data between
Macro Variable & SAS Tables

 Create/reassign macro_var_name
 Same as %let except, can take values from sas table
 Value could be

◦ A variable from a sas dataset
◦ Constant

 Assigns the value at the end of the step
◦ Run
◦ Proc & Data

 Symget vs &
◦ When the variable is resolved

CALL SYMPUT (“macro_var_name”, value);

CALL SYMGET (“macro_var_name”);

Macro Functions
 Pro: Reusable code

◦ Allows you to write a set of sas statements
once, and then use them over and over again

 Con: more complicated code can lead to
more difficulty in debugging
◦ You MUST write modular code
◦ First, write your program in normal SAS code
◦ Test that it works
◦ Then convert to SAS Macro
◦ Test that the macro works

17

18

PHPM672 (Kum) 4/1/2020

Macro Functions
* Define a macro;

* The macro parameters are LOCAL macro variables to the
macro function;

%macro macro_name [(macro_parameters)];

macro_body

%mend [macro-name];

* Invoke a macro that has been defined;

%macro_name [(macro_parameter_name=value)];

* Both syntax is OK;

%macro_name [(value)];

* Try examples. Assignment 4;

Jargon
 Function Parameters

◦ The variables declared in the function interface
◦ dob & dt are local macro variable names

 Function Arguments
◦ The actual values supplied when the function is called.
◦ birth is a variable name from an actual table

%macro age (dob, dt);

.. body of macro function;

%mend;

%age (birth, mdy(1/1/2014));

Input Parameters

Input Arguments

19

20

PHPM672 (Kum) 4/1/2020

Jargon
 Function Parameters

◦ The variables declared in the function interface
◦ dob & dt are local macro variable names

 Function Arguments
◦ The actual values supplied when the function is called.
◦ birth is a variable name from an actual table

%macro age (dob, dt);

.. body of macro function;

%mend;

%age (dob=birth, dt=mdy(1/1/2014));

Input Parameters

Input Arguments

Macro Conditional Logic
* Inside the macro function;

%if condition %then %do;

* if body code;

[%end; %else %if condition %then %do;

* else if body code;]

%end;

* Try examples;

21

22

PHPM672 (Kum) 4/1/2020

Macro Loops
* Inside the macro function;

%do i=istart %to iend;

* if body code;

%end;

* Try examples;

Debugging Macros
 MPRINT
 SYMBOLGEN
 MLOGIC
 %put
 %include

◦ config.sas

Options MPRINT MLOGIC SYMBOLGEN;

* Look at log;

23

24

PHPM672 (Kum) 4/1/2020

Built in Macro Variables
 SAS supplied Macro variables

◦ %put _all_;
◦ %put _automatic_;
◦ %put _user_;
◦ %put _local_;
◦ %put _global_;

 SAS supplied variables
◦ _numeric_;
◦ _character_;
◦ _all_;

Function Review

 Functions
◦ Creating a function
◦ Writing a function
 Function Rules

◦ Calling a function
 Parameters vs. Arguments

◦ Scope
 Functions
 Variables

25

26

PHPM672 (Kum) 4/1/2020

Programming …
Read.
Watch.
Do.
Repeat doing until
you get the hang of it.

From Assignment 6 on …
 Grading for style

◦ Consistent style
◦ Readable beautiful code
◦ Good indentation
◦ Good line breaks
◦ Variable names
◦ Comments

 For full grade: when you are done, go
back and “EDIT” to make it readable and
consistent before submission

27

28

PHPM672 (Kum) 4/1/2020

Assignment 6

 Objectives
◦ Read and write SAS macro variables
◦ Read, use, and modify SAS macro functions

 Lab 6
◦ Start doing in class

Recoding
 It is perfectly fine to overwrite variable value in recoding.

◦ acceptable and RECOMMENDED coding
 county=compress(county)

◦ It means take value from county, compress it, than save
the new value into the county variable and overwrite
what was there.

◦ So no need for the next three lines.*clear blanks in county names;

ncounty=compress(county);

drop county;

rename ncounty=county;

29

30

