
1/30/2018

1

Introduction to Programming
Logical Expressions & Conditionals

Hye-Chung Kum

Population Informatics Lab
http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.org/phpm672

What we are going to learn

 Operators

◦ Logical (~ / !), (& / and), (| / or)

◦ Relational <, <=, ==, >, >

 Learn Conditional programming

◦ if then else end

 Common Pitfalls

Relational Operators
Tests relationship between two objects

Name Operators Examples

Equivalence

Equality = (SAS)

== (STATA)

5 == 5, x == y

Inequality ~= (SAS)

!= (STATA)

5 ~= 5, z == (x^2 + y^2)

Binary Operators

Less Than < 5 < 3

Less Than or Equal <= 4 <= 4,

Greater Than or Equal >= 7 >= 10

Greater Than > 10 > 7

Logical Operators
Boolean operators

 Performs binary logic on two logical data
type operands to return a logical result.

Name Operators Examples

Unary Operators

Logical Negation (NOT) ~ (SAS) / ! (STATA) ~ (3 == 5) = 1 (true)

Binary Operators

Logical And (AND) & / and (SAS) T & T = 1 (true)

Logical Or (OR) | / or (SAS) F | T = 1 (true)

Boolean Logic
Truth Tables (1=T; 0=F)

x y NOT AND OR

~ y x & y x | y

0 0 1 0 0

0 1 0 0 1

1 0 1 0 1

1 1 0 1 1

Logical Expressions

 Simple or complex expression whose final
result is a single true/false logical result

 Examples: Given x=3, y=4, z=5

◦ x == 3

◦ (x+y) < z

◦ Logical operators allow us to build up
compound tests, piece by piece

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://pinformatics.tamhsc.edu/phpm672

1/30/2018

2

Operator Precedence (Full)
Level Operator

1 (highest) Parentheses () inner to outer

2 Transpose ’ , Power ^ ,

3 Unary plus +, Unary Minus -, logical negation ~

4 Multiplication *, Division /

5 Addition +, Subtraction -

6 Comparisons < , <=, > , >=, ==

7 Logical ‘And’ &

8(lowest) Logical ‘Or’ |

* Left to right rule applies

 x & y | z = ? (put parenthesis)

Boolean Logic
Truth Tables: x & y | z

x y z x & y (x&y)|z (y|z) x&(y|z)

0 0 0 0 0 0 0

0 0 1 0 1 1 0

0 1 0 0 0 1 0

0 1 1 0 1 1 0

1 0 0 0 0 0 0

1 0 1 0 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

Logical Data Types

 Data Range
◦ Conceptually: Takes on only two Values
 true or false (1 or 0)

◦ Actually:
 false ↔ zero (0)

 true ↔ any non-zero value (1 or greater)

 This difference can cause subtle bugs if you are not
careful.

 Storage
◦ Conceptually: Uses a single binary bit

◦ Physically/Actually: Takes a single byte

Other Logical Objects

 Functions which return logical data types as
their output

 Test functions (is* functions)

◦ Examples: isfloat(), isvarname(), iskeyword()

 String Comparison functions:

◦ strcmp(), strcmpi(), strncmp(), strncmpi()

Motivation

 Step by Step Programming
◦ All we have learned to do up to now…

◦ Execute statements in order they occur

◦ Single path through program script

 Conditional Programming
◦ What if we only want to run the code only if

some test is satisfied? (print if cond)

◦ What if need to make a choice between 2 or
more options?

◦ How do we make the choice?

Example

SAS

* Initialize to default hourly rate;

* If MS, assign higher rate;

rate=10;

if edu>3 then rate=12;

proc print data=fn(obs=10);

where gender=‘F’;

1/30/2018

3

If-end Statement
Single conditional path

 Syntax:

if <test> then [do;]

commands; * 1 or more;

[end;]

 Tip: For the <test>, use logical expressions
that evaluate to a single true/false value.

Simple Example

* One way;

rate=10;

if (edu > 3) then do;

rate=12;

end;

* Another way;

rate=10;

if (edu > 3) then rate=12;

If-else-end statement
Two alternatives, if <true> else <false> end

 Syntax:

if <test> then [do;]

commands1; * True;

end; else do;

commands2; * False;

end;

Simple Example

* One way;

if (edu > 3) then do;

rate=12;

end; else do;

rate=10;

end;

* Another way;

if (edu > 3) then rate=12;

else rate=10;

If-elseif-else-end Conditional Execution
Multiple chained tests

if <Test1> then do;

commands1; * T1 true;

end; else if <Test2> then do;

commands2; * T2 true;

end; else if <Test3> then do;

commands3; * T3 true;

end; else do;

commands4; * all false;

end;

Example:

if (edu > 5) then do;

rate=16;

end; else if (edu > 4) then do;

rate=14;

end; else if (edu > 3) then do;

rate=12;

end; else do;

rate=10;

end;

1/30/2018

4

Conditional Execution
Nested conditions

if <Test1> then do;

if <Test2> then do;

commands1; * T1,T2 both true;

end; else do;

commands2; * T1=1, T2=0;

end;

end; else do;

if <Test3> then do;

commands3; * T1=0, T3=1;

end; else do;

commands4; * T1,T3 both false;

end;

end;

if expression

statements

end
T

F

expression statements

if expression

statements 1

else

statements 2

end

T
Fexpression Statements 1Statements 2

F

if exp1

statements 1

else if exp2

statements 2

else

statements 3

end

T

F

exp1 statements 1

statements 3

F

Texp2 statements 2

while (expression) do;

statements;

end;

do (expression) until;

statements;

end;

T

F

expression statements

Common Pitfalls

 Using = instead of == and vice versa.

◦ SAS: same, STATA: different
◦ if x = 5 … % Error, use if x == 5

 Confusing & (and) and |(or)

 Inserting an extra space in a 2 character
relational operator
◦ if x < = y % Error, note extra space

◦ if x <= y % Correct

1/30/2018

5

Common Pitfalls, cont.
 Using multiple comparisons properly
◦ 10 <= x <= 100 % Error (OK in SAS)

◦ (10 <= x) & (x <= 100) % Correct

 Forgetting the quotes when working with
characters or strings
◦ if letter ==y % Error (y is the name of var)

◦ if letter ==“y” % Correct (y is value of var)

 Comparing characters / strings (be careful)
◦ 'c' < 'Z' % OK, compatible sizes

◦ 'cat' < 'catch' % Error, size problem

◦ strcmp('cat', 'catch') % Use strcmp

Common Pitfalls, cont.
using if … end instead of if … else .. end

if (error)

disp(errMsg);

end

… %Continue

 Despite detecting an
error, we continue on
to execute the rest of
the script or function

if (error)

disp(errMsg);

else

… %Continue

end

 We only execute the
rest of the script or
function, if we are
error free.

Logical Expressions &
Conditional Programming

Reminder

 Practice using conditional logic

◦ Learn logical operators ~, &, |,

◦ Learn relational operators <, <=, ==, >, >=

◦ Logical expressions

◦ If statement

 Practice writing conditional code

 Do the online modules

Learn to fish

 Reading: READ sections in the
recommended book & modules I give you
before class

 Give you good problems (lab &
assignment) to learn to fish on your own
◦ Lab: Read my/TA code

◦ Assignment: Now write your code

 Available when you get stuck

 Top (problem) down(data) vs bottom up
◦ Need to iterate

Before we start

 I will do more coding in class so you can see how
coding is done
◦ Remember this is just ONE way of doing it. I have

very old habits from when computers were very
different. So pick and choose what you think works
for you

 LAB: I will share code I write, so you learn to read
code

 Assignment: now try to write code to do similar
things with your own data

 Computing environment is important
◦ Does everyone have a stable environment ?
◦ Any question?

1/30/2018

6

Lab: Vars

Hye-Chung Kum

Population Informatics Research Group

http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Course URL:
http://pinformatics.org/phpm672

Lab 2 & Assignment 2: Objective

 To write conditional logic codes

 Subset columns (variables) from a table

 Subset rows (observations) from a table

 Recode, rename variables and calculate
new variables

 Label variables and values

 Lab 2: done?

Recommended Reading

 Carefully read each of the modules below.
Each has very good explanations of exactly
how to do certain things.
◦ http://www.ats.ucla.edu/stat/sas/modules/vars.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/subset.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/missing.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/labels.htm

 Little SAS book

◦ Sections in Chapter 3

Label variables
 SAS
◦ label var1 = “LABLE”;

Label values
 SAS: define format, then use in data step

proc format;

value fname

val1= “LAB1”

val2= “LAB2”;

* inside data step;

format var1 fname.

Label Var vs Value

 Labeling variable

◦ Give a more human friendly name to the
variable name.

◦ Same as bcigever (the computer friendly
name for the variable used in the programs)

◦ Stored in the header information for the
table

label bcigever=“Ever smoked”;

Name Type Size Value

bcigever int8 1 byte 1 or 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://pinformatics.tamhsc.edu/phpm672
http://www.ats.ucla.edu/stat/sas/modules/vars.htm
http://www.ats.ucla.edu/stat/sas/modules/subset.htm
http://www.ats.ucla.edu/stat/sas/modules/missing.htm
http://www.ats.ucla.edu/stat/sas/modules/labels.htm

1/30/2018

7

Label Var vs Value
 labeling value

◦ Give a more human friendly name to the
variable value.

◦ Same as 1(=TRUE) or 0(=FALSE)

◦ internally, the computer stores 0 or 1

◦ But, when printing the values for humans,
the computer uses the format you
created and designated to use for this
variable.

◦ Can be used on multiple variables

◦ It can be permanent (if done in the data
step) or temporary (if done in proc steps)

◦ The format must be created BEFORE use

◦ Stored in the header information for the
table

proc format;

value bool
1= “TRUE”

0= “FALSE”;

* inside data step;
data outfile;

set infile;

format bcigever bool.;

* Removing a format;
data outfile;

set infile;

format bcigever;

Name Type Size Value

bcigever int8 1 byte 1 or 0
Type of variables
(from analysis perspective)
 Var Types
◦ Continuous (discrete is continuous in computers)
◦ Categorical
◦ Boolean
◦ ID: no other information but to link tables

together. i.e. random patient ID used in two
tables.

 Helps you start thinking about what you can
do with the information

 Not all variables types exist in datasets.
 Just state NA.

Basic descriptive analysis

 Numerical

◦ N, mean, max, min, std dev, unique values
(mode)

◦ SAS: proc means

 Categorical

◦ Frequencies, cross tabulation

◦ SAS: proc freq;

 tables var1list/nocol norow nopercent;

 tables var1*var2/nocol norow nopercent;

Reminder

 Make sure to understand lab 2
◦ You MUST submit programs, logs, and output

along with assignment 2

◦ This is how you will LEARN

◦ Most IMPORTANT part of class

 Dataset(s) you want to use through out the
class
◦ Flu dataset

◦ Texas Inpatient Public Use Data File (PUDF)
 http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpu

df.shtm

Swap x1 & x2

 Write the code in SAS

http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpudf.shtm

