
1/30/2018

1

Introduction to Programming
Logical Expressions & Conditionals

Hye-Chung Kum

Population Informatics Lab
http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.org/phpm672

What we are going to learn

 Operators

◦ Logical (~ / !), (& / and), (| / or)

◦ Relational <, <=, ==, >, >

 Learn Conditional programming

◦ if then else end

 Common Pitfalls

Relational Operators
Tests relationship between two objects

Name Operators Examples

Equivalence

Equality = (SAS)

== (STATA)

5 == 5, x == y

Inequality ~= (SAS)

!= (STATA)

5 ~= 5, z == (x^2 + y^2)

Binary Operators

Less Than < 5 < 3

Less Than or Equal <= 4 <= 4,

Greater Than or Equal >= 7 >= 10

Greater Than > 10 > 7

Logical Operators
Boolean operators

 Performs binary logic on two logical data
type operands to return a logical result.

Name Operators Examples

Unary Operators

Logical Negation (NOT) ~ (SAS) / ! (STATA) ~ (3 == 5) = 1 (true)

Binary Operators

Logical And (AND) & / and (SAS) T & T = 1 (true)

Logical Or (OR) | / or (SAS) F | T = 1 (true)

Boolean Logic
Truth Tables (1=T; 0=F)

x y NOT AND OR

~ y x & y x | y

0 0 1 0 0

0 1 0 0 1

1 0 1 0 1

1 1 0 1 1

Logical Expressions

 Simple or complex expression whose final
result is a single true/false logical result

 Examples: Given x=3, y=4, z=5

◦ x == 3

◦ (x+y) < z

◦ Logical operators allow us to build up
compound tests, piece by piece

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://pinformatics.tamhsc.edu/phpm672

1/30/2018

2

Operator Precedence (Full)
Level Operator

1 (highest) Parentheses () inner to outer

2 Transpose ’ , Power ^ ,

3 Unary plus +, Unary Minus -, logical negation ~

4 Multiplication *, Division /

5 Addition +, Subtraction -

6 Comparisons < , <=, > , >=, ==

7 Logical ‘And’ &

8(lowest) Logical ‘Or’ |

* Left to right rule applies

 x & y | z = ? (put parenthesis)

Boolean Logic
Truth Tables: x & y | z

x y z x & y (x&y)|z (y|z) x&(y|z)

0 0 0 0 0 0 0

0 0 1 0 1 1 0

0 1 0 0 0 1 0

0 1 1 0 1 1 0

1 0 0 0 0 0 0

1 0 1 0 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

Logical Data Types

 Data Range
◦ Conceptually: Takes on only two Values
 true or false (1 or 0)

◦ Actually:
 false ↔ zero (0)

 true ↔ any non-zero value (1 or greater)

 This difference can cause subtle bugs if you are not
careful.

 Storage
◦ Conceptually: Uses a single binary bit

◦ Physically/Actually: Takes a single byte

Other Logical Objects

 Functions which return logical data types as
their output

 Test functions (is* functions)

◦ Examples: isfloat(), isvarname(), iskeyword()

 String Comparison functions:

◦ strcmp(), strcmpi(), strncmp(), strncmpi()

Motivation

 Step by Step Programming
◦ All we have learned to do up to now…

◦ Execute statements in order they occur

◦ Single path through program script

 Conditional Programming
◦ What if we only want to run the code only if

some test is satisfied? (print if cond)

◦ What if need to make a choice between 2 or
more options?

◦ How do we make the choice?

Example

SAS

* Initialize to default hourly rate;

* If MS, assign higher rate;

rate=10;

if edu>3 then rate=12;

proc print data=fn(obs=10);

where gender=‘F’;

1/30/2018

3

If-end Statement
Single conditional path

 Syntax:

if <test> then [do;]

commands; * 1 or more;

[end;]

 Tip: For the <test>, use logical expressions
that evaluate to a single true/false value.

Simple Example

* One way;

rate=10;

if (edu > 3) then do;

rate=12;

end;

* Another way;

rate=10;

if (edu > 3) then rate=12;

If-else-end statement
Two alternatives, if <true> else <false> end

 Syntax:

if <test> then [do;]

commands1; * True;

end; else do;

commands2; * False;

end;

Simple Example

* One way;

if (edu > 3) then do;

rate=12;

end; else do;

rate=10;

end;

* Another way;

if (edu > 3) then rate=12;

else rate=10;

If-elseif-else-end Conditional Execution
Multiple chained tests

if <Test1> then do;

commands1; * T1 true;

end; else if <Test2> then do;

commands2; * T2 true;

end; else if <Test3> then do;

commands3; * T3 true;

end; else do;

commands4; * all false;

end;

Example:

if (edu > 5) then do;

rate=16;

end; else if (edu > 4) then do;

rate=14;

end; else if (edu > 3) then do;

rate=12;

end; else do;

rate=10;

end;

1/30/2018

4

Conditional Execution
Nested conditions

if <Test1> then do;

if <Test2> then do;

commands1; * T1,T2 both true;

end; else do;

commands2; * T1=1, T2=0;

end;

end; else do;

if <Test3> then do;

commands3; * T1=0, T3=1;

end; else do;

commands4; * T1,T3 both false;

end;

end;

if expression

statements

end
T

F

expression statements

if expression

statements 1

else

statements 2

end

T
Fexpression Statements 1Statements 2

F

if exp1

statements 1

else if exp2

statements 2

else

statements 3

end

T

F

exp1 statements 1

statements 3

F

Texp2 statements 2

while (expression) do;

statements;

end;

do (expression) until;

statements;

end;

T

F

expression statements

Common Pitfalls

 Using = instead of == and vice versa.

◦ SAS: same, STATA: different
◦ if x = 5 … % Error, use if x == 5

 Confusing & (and) and |(or)

 Inserting an extra space in a 2 character
relational operator
◦ if x < = y % Error, note extra space

◦ if x <= y % Correct

1/30/2018

5

Common Pitfalls, cont.
 Using multiple comparisons properly
◦ 10 <= x <= 100 % Error (OK in SAS)

◦ (10 <= x) & (x <= 100) % Correct

 Forgetting the quotes when working with
characters or strings
◦ if letter ==y % Error (y is the name of var)

◦ if letter ==“y” % Correct (y is value of var)

 Comparing characters / strings (be careful)
◦ 'c' < 'Z' % OK, compatible sizes

◦ 'cat' < 'catch' % Error, size problem

◦ strcmp('cat', 'catch') % Use strcmp

Common Pitfalls, cont.
using if … end instead of if … else .. end

if (error)

disp(errMsg);

end

… %Continue

 Despite detecting an
error, we continue on
to execute the rest of
the script or function

if (error)

disp(errMsg);

else

… %Continue

end

 We only execute the
rest of the script or
function, if we are
error free.

Logical Expressions &
Conditional Programming

Reminder

 Practice using conditional logic

◦ Learn logical operators ~, &, |,

◦ Learn relational operators <, <=, ==, >, >=

◦ Logical expressions

◦ If statement

 Practice writing conditional code

 Do the online modules

Learn to fish

 Reading: READ sections in the
recommended book & modules I give you
before class

 Give you good problems (lab &
assignment) to learn to fish on your own
◦ Lab: Read my/TA code

◦ Assignment: Now write your code

 Available when you get stuck

 Top (problem) down(data) vs bottom up
◦ Need to iterate

Before we start

 I will do more coding in class so you can see how
coding is done
◦ Remember this is just ONE way of doing it. I have

very old habits from when computers were very
different. So pick and choose what you think works
for you

 LAB: I will share code I write, so you learn to read
code

 Assignment: now try to write code to do similar
things with your own data

 Computing environment is important
◦ Does everyone have a stable environment ?
◦ Any question?

1/30/2018

6

Lab: Vars

Hye-Chung Kum

Population Informatics Research Group

http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Course URL:
http://pinformatics.org/phpm672

Lab 2 & Assignment 2: Objective

 To write conditional logic codes

 Subset columns (variables) from a table

 Subset rows (observations) from a table

 Recode, rename variables and calculate
new variables

 Label variables and values

 Lab 2: done?

Recommended Reading

 Carefully read each of the modules below.
Each has very good explanations of exactly
how to do certain things.
◦ http://www.ats.ucla.edu/stat/sas/modules/vars.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/subset.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/missing.htm

◦ http://www.ats.ucla.edu/stat/sas/modules/labels.htm

 Little SAS book

◦ Sections in Chapter 3

Label variables
 SAS
◦ label var1 = “LABLE”;

Label values
 SAS: define format, then use in data step

proc format;

value fname

val1= “LAB1”

val2= “LAB2”;

* inside data step;

format var1 fname.

Label Var vs Value

 Labeling variable

◦ Give a more human friendly name to the
variable name.

◦ Same as bcigever (the computer friendly
name for the variable used in the programs)

◦ Stored in the header information for the
table

label bcigever=“Ever smoked”;

Name Type Size Value

bcigever int8 1 byte 1 or 0

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://pinformatics.tamhsc.edu/phpm672
http://www.ats.ucla.edu/stat/sas/modules/vars.htm
http://www.ats.ucla.edu/stat/sas/modules/subset.htm
http://www.ats.ucla.edu/stat/sas/modules/missing.htm
http://www.ats.ucla.edu/stat/sas/modules/labels.htm

1/30/2018

7

Label Var vs Value
 labeling value

◦ Give a more human friendly name to the
variable value.

◦ Same as 1(=TRUE) or 0(=FALSE)

◦ internally, the computer stores 0 or 1

◦ But, when printing the values for humans,
the computer uses the format you
created and designated to use for this
variable.

◦ Can be used on multiple variables

◦ It can be permanent (if done in the data
step) or temporary (if done in proc steps)

◦ The format must be created BEFORE use

◦ Stored in the header information for the
table

proc format;

value bool
1= “TRUE”

0= “FALSE”;

* inside data step;
data outfile;

set infile;

format bcigever bool.;

* Removing a format;
data outfile;

set infile;

format bcigever;

Name Type Size Value

bcigever int8 1 byte 1 or 0
Type of variables
(from analysis perspective)
 Var Types
◦ Continuous (discrete is continuous in computers)
◦ Categorical
◦ Boolean
◦ ID: no other information but to link tables

together. i.e. random patient ID used in two
tables.

 Helps you start thinking about what you can
do with the information

 Not all variables types exist in datasets.
 Just state NA.

Basic descriptive analysis

 Numerical

◦ N, mean, max, min, std dev, unique values
(mode)

◦ SAS: proc means

 Categorical

◦ Frequencies, cross tabulation

◦ SAS: proc freq;

 tables var1list/nocol norow nopercent;

 tables var1*var2/nocol norow nopercent;

Reminder

 Make sure to understand lab 2
◦ You MUST submit programs, logs, and output

along with assignment 2

◦ This is how you will LEARN

◦ Most IMPORTANT part of class

 Dataset(s) you want to use through out the
class
◦ Flu dataset

◦ Texas Inpatient Public Use Data File (PUDF)
 http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpu

df.shtm

Swap x1 & x2

 Write the code in SAS

http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpudf.shtm

