
PHPM672 (Kum) 1/30/2020

Loops & Arrays
efficiency
for statements
while statements

Hye-Chung Kum
Population Informatics Research Group

http://pinformatics.org/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.org/phpm672

What you learned so far…
 Assignment 1

◦ Setup work environment
◦ Use the SAS software
◦ SAS programming basics

 data step & proc step
 libname
 Writing code & Reading logs

 Assignment 2
◦ Understand variables (names, types, labels)
◦ To write conditional logic codes
◦ Subset columns (variables) from a table
◦ Subset rows (observations) from a table
◦ Recode, rename variables and calculate new variables
◦ Label variables and values

1

2

PHPM672 (Kum) 1/30/2020

Assignment Plan

 1: Type what I gave you and run
 2: Write your own relatively simple
 3: Write your first real program (reusable

elegant code)
 4: Combining Tables
 5: Indexing
 6: Macros
 Final project

Required Reading
 UCLA module

◦ https://stats.idre.ucla.edu/sas/modules/working-across-variables/

 Little SAS book
◦ 3.11 Simplifying programs with arrays
◦ 3.12 Using Shortcuts to Lists of Variable Names

 Most difficult of required content
◦ assignment 1 to 4

 But also will come in most handy in doing
your research

 READ the required readings
 Attend Lab tomorrow

3

4

PHPM672 (Kum) 1/30/2020

Objective

 use for loops (counting loops)
 use while loops (conditional loops)
 use one dimensional arrays
 Understand how to write reusable code
 Understand how to optimize your

programming time: KISS (Keep it simple)

do index = start to end by increment;
statements;

end;

Increment
index

statements<=end?

index = start

T

F

5

6

PHPM672 (Kum) 1/30/2020

do while (expression);
statements;

end;

T

F

expression statements

do until (expression);
statements;

end;

T

F
expression

statements

Programming Goals:
 Correctness

 Gives the right answer
 Never returns the wrong answer

 Robustness
 Program doesn’t crash, even for bad input

 Maintainable (or *Sustainable*)
 Simple code, easy to understand and modify
 Readable, well-commented, well-structured

 Fast (Efficient)
 Uses efficient algorithms
 Takes advantage of language features to improve

speed

7

8

PHPM672 (Kum) 1/30/2020

User Efficiency
optimize your own time

 K.I.S.S. Keep it simple …
 Simple code is easier to understand and fix
 A simple but correct solution is more valuable than a clever

elegant but incorrect solution.

 Understand your code, Avoid accidental coding
 Find some code, type it in, it seems to work, so …
 When problems inevitably appear, you can’t fix the bugs, if you

don’t understand your own code…
 Use help & documentation
 Play with functionality until you understand it. (trial & error)

 Have a plan (Divide & Conquer)
 Come up with a plan
 Break plan into small bite-size chunks
 Solve each chunk and verify that chunk works properly
 Assemble all the working chunks to solve original problem

Algorithmic Efficiency
 Reducing the amount of computing resources

that an algorithm consumes
◦ Speed: The amount of time it takes for an algorithm

to complete
◦ Space: The amount of memory or storage used by an

algorithm.

 Note: Most of the problems we solve in class
don’t require this extra level of effort.

 If your solution works correctly, but is running too
slowly, or is taking too much memory, often the
best solution is to find a better algorithm.

9

10

PHPM672 (Kum) 1/30/2020

Looping Efficiency

 Loops are powerful flexible concepts for
solving problems involving repetitive
processing of the same task with different
data over and over again

 It makes modifying code efficient
◦ You don’t have to change in multiple places

Looping

Goal: I have a task (piece of code) that I want to
repeat over and over again on a list of data.

How could I do that?
* Brute Force: Cut & Paste & Tweak

if cigever=1 then bcigever=1;

else if cigever=2 then bcigever=0;

if alcever=1 then balcever=1;

else if alcever=2 then balcever=0;

if cocever=1 then bcocever=1;

else if cocever=2 then bcocever=0;

if mjever=1 then bmjever=1;

else if mjever in (0,2) then bmjever=0;

11

12

PHPM672 (Kum) 1/30/2020

Arrays
 A set of variables grouped together for the

duration of the data step
 So that all variables in the group can be referred

to systematically
 SAS: index typically starts at 1
 Every task that can be done with arrays can also

be done without arrays
 Why do we use arrays?

◦ Efficient programming: do not need to write repeated
codes

◦ Accuracy: With fewer lines of codes, easier to debug
ERRORs, and maintain code

◦ Extensible: Easy to extend your code

array{1} array{2} array{3} array{4}

rate2005 rate2006 rate2007 rate2008

 array aname {dim} [$len] elements;

 array rate {4} rate2005-rate2008;

The type of
variables in
the array

SAS: Arrays
array{1} array{2} array{3} array{4}

rate2005 rate2006 rate2007 rate2008

Tell SAS that
an array will
be created

The name of
the array

The dimension
(size) of the

array

The length of
variables in the

array

The name of
variables in the

array

13

14

PHPM672 (Kum) 1/30/2020

SAS: Arrays
 All variables in one array must be of the same type

 Variables specified within an array do not need to already exist

 array aname {dim} [$len] elements

◦ array rate {4} rate2005-rate2008;

◦ array rate {*} rate2005-rate2008;

◦ array rate {4} ; *implicit: rate1-rate4;

◦ array rate {*} rate: ; *NOT RECOMMENDED;

 Dim(Dimension): how many elements
◦ Can be implicit by using *

 $len: type and length of variables when strings
◦ Omitted for numerical variables

◦ Array name{3} $10.;

 elements: list of variables

 index: an integer pointer that identifies the element in the array
◦ array {index} or array [index]

◦ rate2006 is indexed by 2

array{1} array{2} array{3} array{4}

rate2005 rate2006 rate2007 rate2008

Lab 3 Objective

 use for loops (counting loops)
 use while loops (conditional loops)
 use one dimensional arrays

15

16

PHPM672 (Kum) 1/30/2020

Start Lab 3
 Who does not have lab2 working? Download from site

 Not allowed to open the full table ever for this class, even if you can.
◦ Purpose is to learn to use BIG tables

 Option1: having difficulty reading code
◦ Submit fully commented code

 Add line by line comments (i.e. translate into English)
 Important to understand what each line does

◦ Submit log & results
 Read the log to understand and add comments

 Option 2: comfortable reading code, not writing code
◦ Read my code

◦ Try to write it starting from lab2, without looking

 Option 3: comfortable reading & writing code
◦ Do small exercise: write code (P2)

By next class
 Read lab 3 and assignment 3
 Ask questions
 There is a midpoint submission
 You have 2.5 weeks on this assignment

◦ Midpoint at 1.5 weeks (Tues)
 In class

◦ Review assignment 3 midpoint email together
◦ Website
◦ Diff lab2.sas lab3_for.sas

17

18

PHPM672 (Kum) 1/30/2020

Counted (Iterative) Loops

do index = start to end by increment;
statements;

end;

Increment
index

statements<=end?

index = start

T

F

19

20

PHPM672 (Kum) 1/30/2020

SAS: for loop statement
the counted loop solution

do <varindex> = <start> to <stop>;

<Body: do some work with varindex>

end;

do <idx> = <start> to <stop> by <step>;

<Body: do some work with varindex>

end;

ever{1} ever{2} ever{3} ever{4}

cigever alcever cocever mjever

bever{1} bever{2} bever{3} bever{4}

bcigever balcever bcocever bmjever

* Brute Force: Cut & Paste & Tweak

if cigever=1 then bcigever=1;

else if cigever=2 then bcigever=0;

if alcever=1 then balcever=1;

else if alcever=2 then balcever=0;

if cocever=1 then bcocever=1;

else if cocever=2 then bcocever=0;

if mjever=1 then bmjever=1;

else if mjever in (0,2) then bmjever=0;

* Using arrays is much more elegant and accurate;

array ever{4} cigever alcever cocever mjever;

array bever{4} bcigever balcever bcocever bmjever;

do i=1 to 4;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

21

22

PHPM672 (Kum) 1/30/2020

ever{1} ever{2} ever{3} ever{4}

cigever alcever cocever mjever

bever{1} bever{2} bever{3} bever{4}

bcigever balcever bcocever bmjever

* Brute Force: Cut & Paste & Tweak

if cigever=1 then bcigever=1;

else if cigever=2 then bcigever=0;

if alcever=1 then balcever=1;

else if alcever=2 then balcever=0;

if cocever=1 then bcocever=1;

else if cocever=2 then bcocever=0;

if mjever=1 then bmjever=1;

else if mjever in (0,2) then bmjever=0;

* Using arrays is much more elegant and accurate;

array ever{4} cigever alcever cocever mjever;

array bever{4} bcigever balcever bcocever bmjever;

do i=1 to 4;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

ever{1} ever{2} ever{3} ever{4}

cigever alcever cocever mjever

bever{1} bever{2} bever{3} bever{4}

bcigever balcever bcocever bmjever

Indent
Why?

Indent
Why?

Nested if
statement

* Using arrays is much more elegant and accurate;

array ever{4} cigever alcever cocever mjever;

array bever{4} bcigever balcever bcocever bmjever;

do i=1 to 4;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

* Even better, more extensible, using arrays;

array ever{*} cigever alcever cocever mjever;

array bever{*} bcigever balcever bcocever bmjever;

do i=1 to dim(ever); * uses the dimension of the array;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

23

24

PHPM672 (Kum) 1/30/2020

ever{1} ever{2} ever{3} ever{4}

cigever alcever cocever mjever

bever{1} bever{2} bever{3} bever{4}

bcigever balcever bcocever bmjever

Indent
Why?

Indent
Why?

Nested if
statement

* Using arrays is much more elegant and accurate;

array ever{5} cigever alcever cocever mjever snfever;

array bever{5} bcigever balcever bcocever bmjever bsnfever;

do i=1 to 5;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

* Even better, more extensible, using arrays;

array ever{*} cigever alcever cocever mjever snfever;

array bever{*} bcigever balcever bcocever bmjever bsnfever;

do i=1 to dim(ever); * uses the dimension of the array;

if ever{i}=1 then bever{i}=1;

else if ever{i} in (0,2) then bever{i}=0;

end;

Indentation – helps outline code
Which is more readable?

do i=1 to dim(ever);
if ever{i}=1 then
bever{i}=1;
else if ever{i} in (0,2) then
bever{i}=0;
end;

do i=1 to dim(ever);
if ever{i}=1 then

bever{i}=1;
else if ever{i} in (0,2) then

bever{i}=0;
end;

25

26

PHPM672 (Kum) 1/30/2020

Indentation & Line Break
Which is more readable?

do i=1 to dim(ever);
if ever{i}=1 then bever{i}=1;
else if ever{i} in (0,2) then bever{i}=0;

end;

do i=1 to dim(ever);
if ever{i}=1 then

bever{i}=1;
else if ever{i} in (0,2) then

bever{i}=0;
end;

Looping behavior (Iteration)

do i=1 to dim(ever);
if ever{i}=1 then bever{i}=1;
else if ever{i} in (0,2) then bever{i}=0;

end;

* Hidden Code: i = i + 1; * changes each iteration
Inserted Here if i <= dim(ever)

<jump back to top of loop>
else <exit loop> end

Body:
This code gets repeated ‘n’ times,
n = dim(ever) = 4

27

28

PHPM672 (Kum) 1/30/2020

How to figure out new syntax
 Changes over time
 Find a reliable source you like
 https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4

_3.5&docsetId=pgmsashome&docsetTarget=home.htm&locale=en
◦ Language elements/statements/do

 http://www.stata.com/help.cgi?foreach
 google

◦ sas loops

◦ sas arrays

◦ stata foreach over multiple varlist

◦ http://www.stata.com/statalist/archive/2013-03/msg01241.html

Counted Loops

Code some

29

30

PHPM672 (Kum) 1/30/2020

Counted Loops vs.
Conditional Loops

 Counted Loops
◦ I want to repeat a task (piece of code) a

specified number of times, say 'n'
 Example: I want to calculate grades for all 40

students in my class

 Conditional Loops
◦ I want to repeat a task until some condition is

satisfied.
 Example: I want to grade as many students as I can

between now and when I go home at 5:00 PM.

SAS: conditional loops
 There are 3 forms of the DO statement:

◦ The iterative DO statement executes statements between DO
and END statements repetitively based on the value of an index
variable. The iterative DO statement can contain a WHILE or
UNTIL clause.
 STOP when finished running N times

◦ The DO UNTIL statement executes statements in a DO loop
repetitively until a condition is true, checking the condition after
each iteration of the DO loop.
 STOP when the condition is TRUE

◦ The DO WHILE statement executes statements in a DO loop
repetitively while a condition is true, checking the condition
before each iteration of the DO loop.
 STOP when the condition is FALSE

31

32

PHPM672 (Kum) 1/30/2020

do while loop statement
the conditional loop solution (SAS)

do while (<test>);
<Body: do some work>
<Update: make progress towards exiting loop>

end;

If we don’t know ahead of time, how many times we
need to loop but we can write a test for when we
are done; Then the while loop is a great solution.
Note: For this to work properly, the <test> needs to evaluate to a logical
value.

Note: The body of the while loop will continue to get executed as long
as the <test> evaluates to true. The while loop is exited as soon as the
condition evaluates to false.

do until loop statement
the conditional loop solution

do until (<test>);
<Body: do some work>
<Update: make progress towards exiting loop>

end;

 Very similar to do while loop

 The difference ?

◦ The test is evaluated
 Until: at the bottom of the loop after the statements in the DO loop

have been executed. The DO loop always iterates at least once.
 While: at the top of the loop before the statements in the DO loop

have been executed.

◦ Stops when
 Until: If the expression is true, the DO loop does not iterate again
 While: If the expression is false, the DO loop does not iterate again.

33

34

PHPM672 (Kum) 1/30/2020

Infinite Loops
count = 1;
do while (1); * test always true;

* This Loop never stops;
count = count + 1;

end;

Note: Use <ctrl-c> or STOP or Kill SAS
to exit current execution, if you appear to be stuck
in an infinite loop.

For most programs, the test expression must
eventually become false, for the loop to be
useful.

Counting in a while loop
* Initialize variables;

array rate{*} rate2001 – rate2013;

idx = 1;

count = 0;

* Count years with rate > 7;

do while (idx <= dim(rate));

* Test current element against 7;

if rate(idx) > 7.0 then

count = count + 1;

* Update: Don’t forget to increment !;

idx = idx + 1;

end;

35

36

PHPM672 (Kum) 1/30/2020

Better to use the for loop
* Initialize variables;

array rate{*} rate2001-rate2013;

count = 0;

* Count years with rate > 7;

do idx=1 to dim(rate));

* Test current element against 7;

if rate(idx) > 7.0 then

count = count + 1;

end;

A good example for while loop
multiple conditions
* What year was the 4th year when rate > 7;

array rate{*} rate2001 – rate2013;

idx = 1;

count = 0;

* Count years with rate > 7;

do while (count<4 & idx <= dim(rate));

* Test current element against 7;

if rate(idx) > 7.0 then

count = count + 1;

* Update: Don’t forget to increment !

idx = idx + 1;

end;

if (count=4) then year4=1999+idx;

* else year4=.;

37

38

PHPM672 (Kum) 1/30/2020

leave statement

array rate{*} rate2001 – rate2013;

idx = 1;

count = 0;

* What year was the 4th year when rate > 7;

do while (idx <= dim(rate));

if rate(idx) > 7.0 then

count = count + 1;

* Jump out of while loop;

if (count = 4) then leave;

idx = idx + 1;

end;

* Control flow jumps to here after break;

if (count=4) then year4=2000+idx;

Terminates for or while loops. breaks flow of control of inner
most nested while or for loop containing leave statement.

Breaking out of loop

 The LEAVE statement causes processing
of the current loop to end.

 The CONTINUE statement stops the
processing of the current iteration of a
loop and resumes with the next iteration.

39

40

PHPM672 (Kum) 1/30/2020

Common Pitfalls

 Forgetting to initialize useful variables
 Remember to set the running sum or count to zero

before you start summing or counting.
 Remember to set the running product to one before

using it
 Remember to initialize index variables for while loops

 Code not executing
 Not realizing that it is possible for the body of a while

loop to never get executed, depending on your test
condition.

 Causing an Infinite loop
 Writing a while test condition that never fails.
 Forgetting to update index variables in while loops

Conditional Loops

Code some

41

42

PHPM672 (Kum) 1/30/2020

Multi Dimensional Arrays
 We only looked at one dimensional arrays

◦ SAS: Two dimensional arrays (two indices)
◦ array m{4,3} $3. month1-month12;

◦ first month of each quarter: m{qtr,1}

◦ 4 rows & 3 columns

◦ SAS places variables into a two-dimensional array by
filling all rows in order, beginning at the upper-left
corner of the array (known as row-major order).

where
1<=qtr<=4

month1 (Jan) month2 (Feb) month2 (Mar)

month4 (Apr) month5 (May) month6 (Jun)

month7 (Jul) month8 (Aug) month9 (Sep)

month10 (Oct) month11 (Nov) month12 (Dec)

Summary
 Use arrays to recode groups of variables
 Use arrays to create and initialize new groups of

variables
 Use arrays to count across a group of variables
 When using arrays/loops you need to look at the

code from the perspective of the computer to
understand what is happening internally

 Be patient!
◦ You will run into many errors when you start writing

loops/arrays
◦ But practice makes perfect. Practice writing small

codes

43

44

PHPM672 (Kum) 1/30/2020

Use arrays to recode groups of
variables
 You have five variables, which were all

coded as 99 for refuse to answer
 You want to recode all five variables so

that 99 is a missing for analysis

Without using Arrays Using Arrays

if var1=99 then var1=.; array v{*} var1-var5;

if var2=99 then var2=.; do i=1 to dim(v);

if var3=99 then var5=.; if v{i}=99 then v{i}=.;

if var4=99 then var4=.; end;

if var5=99 then var5=.;

Use arrays to create/initialize
groups of variables
 You are creating five new variables to

store rates for each month from Jan-May
 You need to initialize all of them to be 0

Without using Arrays Using Arrays

jan=1; array m{*} jan feb mar apr may;

feb=1; do i=1 to dim(m);

mar=1; m{i}=0;

apr=1; end;

may=1;

45

46

PHPM672 (Kum) 1/30/2020

Use arrays to count across groups of
variables
 You want to know how many assignments were

over 90
 Complex if not using arrays

◦ Create temporary binary variables for each
assignment first

◦ Then sum the binary variables

Without using Arrays Using Arrays

if assign1>90 then
bassign1=1;

if assign2>90 then
bassign2=1;

… for all 6 vars …
cnt=sum (of assign1-assign6);
drop bassign1-bassign6;

*assign1-assign6;
array assign{6};
cnt=0;
do i=1 to dim(assign);
if assign{i}>90 then

cnt=cnt+1;
end;

Algorithms

 Common Idioms
◦ Divide & Conquer
◦ Iterate
◦ Copying
◦ Counting
◦ Summing
◦ Searching
◦ Sorting

47

48

PHPM672 (Kum) 1/30/2020

Reminder
 Review

◦ Loops
 do loops (counting loops)
 while loops

◦ Efficiency concepts
 Assign 3

◦ Lab 3 this week
◦ Assignment 3 next week

 Read
◦ UCLA module (see website)
◦ Little SAS book

 3.11 Simplifying programs with arrays
 3.12 Using Shortcuts to Lists of Variable Names

49

50

