

Autoimmune and Systemic Inflammatory Syndromes Collaborative Research Group (ASIS CRG)

Privacy Preserving Interactive Record Linkage (PPIRL) via Information Suppression

Hye-Chung Kum (PI)
Alva Ferdinand Eric Ragan Cason Schmit

Population Informatics Lab https://pinformatics.org/ppirl/index.php

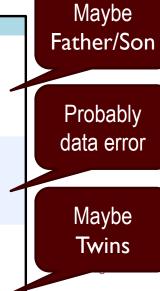
Privacy Preserving Interactive Record Linkage (PPIRL) via Information Suppression

Hye-Chung Kum (PI)

Alva Ferdinand Eric Ragan Cason Schmit

Population Informatics Lab

https://pinformatics.org/ppirl/index.php



Record Linkage: Same or Different People?

- Given multiple databases, determine if records refer to the same real world people or not
- Your job in this study is to:
 - 1) Look at pairs of rows of data about people
 - 2) Decide whether or not the pair refers to the same person.

Pair	ID	First name	Last name	DoB(M/D/Y)	Sex	Race
1	8000002767	JUDE	WILLIAM	09/09/1906	М	W
1	8000003567	JUDE	WILLIAM JR	09/09/1960	М	В
	0000006947	BRYANT	MADELINE	05/02/1962	F	W
2	0000006947	MADELINE	BRYANT	05/02/1962	F	W
	9000018540	SALLY	BYRD	07/04/1960	F	W
3	6000008928	JOHN	BYRD	04/07/1960	М	

Common Issues with Data about People Make Record Linkage Difficult to do Fully Automatically

Data are expressed differently

Nick Names (Elizabeth & Beth)

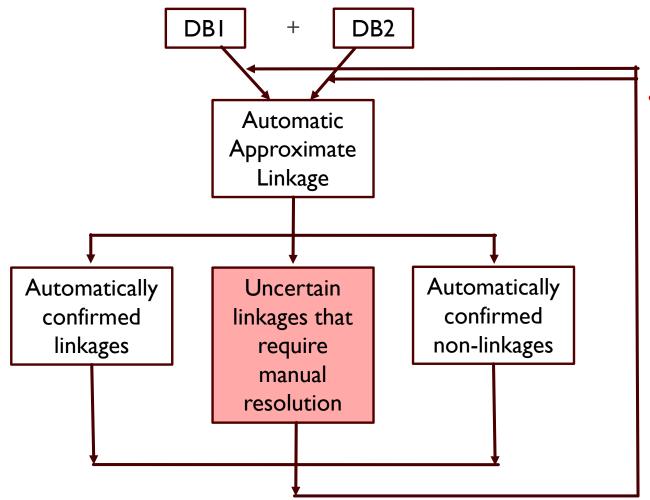
Data change over time

Women get married and change their last name

Data are not unique attributes

- John Smith (there are different people that have the same name)
- Twins & Family members have similar identifying information such as DOB & last name
- Same names in Families with different suffix (Jr and Sr)

Data are sometimes missing


SSN are often missing

Data have errors

- Inserting/deleting extra characters
- Typing in the wrong character
- Transposing two characters
- First name and last name are mixed up
- Day and month is mixed up

Approximate Record Linkage Human-Computer System

- Human Interaction With Data for
 - Standardize
 - O Clean Data
 - o Build Training Data

- 75%-80% automatics
- 15%-25% manual resolution

Aims & Outcomes Prototype software & companion documents

Phase 1 – Completed Framework on Privacy Preserving Interactive Record Linkage (PPIRL): Privacy & Utility Objective

Phase 2 – Research Needed: Algorithm & Methods Development for Design of SDLink Software and Companion Documents (PCORI proposal)

Approach Computational: Agile Software Development (Iterative Spiral Process) Part

Methods Incremental, on-demand, partial disclosure

and linkage quality?

Outcome

Aim 1: Effective Info. Disclosure

Task1.A: Design User Interface (UI)

Task1.B: Algorithm & Implementation

off between information disclosure

Task1.C: Evaluation – What is the trade

k-anonymity set size & Apriori algorithm

Aim 2: Theoretical Privacy Risk Analysis

Task2.A: Design Budget System

Task2.B: Algorithm & Implementation

Task2.C: Evaluation – What budget (level of disclosure) is required for high quality

linkage?

Participatory Action Research

Nominal Group Technique & Delphi

Aim 3: Practical Privacy Risk Analysis

Task3.A: Engage & Education on PPIRL

Task3.B: Build Consensus on PPIRL

Task3.C: Incorporate into companion

documents (Privacy Statement, IRB

Application, DUA) and SDLink Software

SDLink Software Prototype (Pre-Beta version: Year 2 & Prototype Version 0.5: Year 3)

3 SDLink Companion Documents

Phase 3 – After Project is Completed: Hardening Code – SDLink Software Development & Release (Collaboration with Kitware Inc.)

Aims 1&2: Outcomes – Prototype Software Privacy Preserving Interactive Record Linkage (PPIRL)

Phase 1 – Completed Framework on Privacy Preserving Interactive Record Linkage (PPIRL): Privacy & Utility Objective

Phase 2 – Research Needed: Algorithm & Methods Development for Design of SDLink Software and Companion Documents (PCORI proposal) Computational: Agile Software Development (Iterative Spiral Process) Approach Participatory Action Research Methods Incremental, on-demand, partial disclosure k-anonymity set size & Apriori algorithm Nominal Group Technique & Delphi Aim 3: Practical Privacy Risk Analysis Aim 1: Effective Info. Disclosure Aim 2: Theoretical Privacy Risk Analysis Task3.A: Engage & Education on PPIRL Task1.A: Design User Interface (UI) Task2.A: Design Budget System Task2.B: Algorithm & Implementation Task3.B: Build Consensus on PPIRL Task1.B: Algorithm & Implementation Task1.C: Evaluation – What is the trade Task2.C: Evaluation – What budget (level of Task3.C: Incorporate into companion disclosure) is required for high quality documents (Privacy Statement, IRB) off between information disclosure Application, DUA) and SDLink Software and linkage quality? linkage? SDLink Software Prototype (Pre-Beta version: Year 2 & Prototype Version 0.5: Year 3) Outcome 3 SDLink Companion Documents

Phase 3 – After Project is Completed: Hardening Code – SDLink Software Development & Release (Collaboration with Kitware Inc.)

Status Quo: Show everything

Pair	ID	First name	Last name	DoB (M/D/Y)	Sex	Race
1	8000002767	JUDE	WILLIAM	09/09/1906	М	W
	8000003567	JUDE	WILLIAM JR	09/09/1960	М	В
2	0000006947	BRYANT	MADELINE	05/02/1962	F	W
	0000006947	MADELINE	BRYANT	05/02/1962	F	W
3	9000018540	SALLY	BYRD	07/04/1960	F	W
	6000008928	ЈОНИ	BYRD	04/07/1960	М	

Are there ways to enhance privacy during record linkage?

Information Privacy 101: Point One Privacy is a BUDGET constrained problem

- Differential Privacy proves each query leads to some privacy loss while providing some utility in terms of data analysis
- Current protection mechanism in database research is not effective
 - de-identified data cannot be linked
 - Not sharing enough details: leads to bias, and invalid results
- The goal is to achieve the maximum utility under a fixed privacy budget

Too Focused on Privacy

- Not enough information to make good linkage decisions
 - o Consequences 1: incorrectly link different people
 - o Consequences 2: missing linking same people
- Ultimately: research results are not correct

Too Focused on Utility

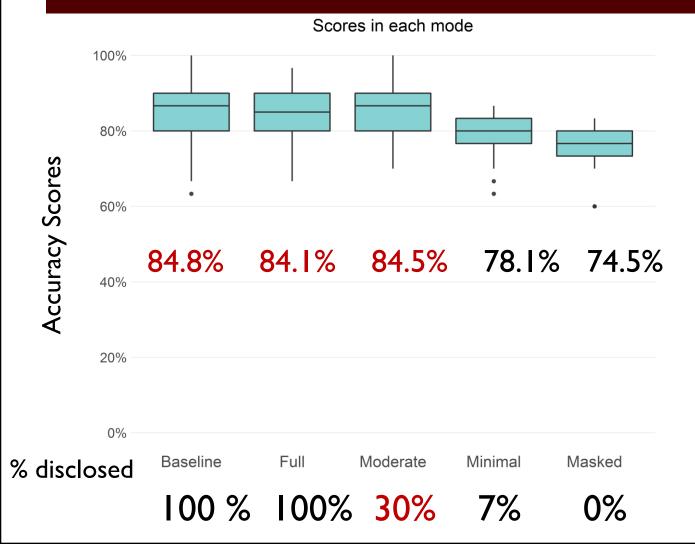
Unnecessarily exposure, risk

Optimal balance point in record linkage

How can we support projects finding the optimal balance in their projects?

Our approach 1 Help people by highlighting differences: Add markup

Pair	ID	FFreq	First name	Last name	LFreq	DoB(M/D/Y)	Sex	Race
1	800000 <mark>27</mark> 67 X 800000 <mark>35</mark> 67	1	JUDE	WILLIAM WILLIAM JR	1	09/09/19 <mark>06 </mark>	M M	W DIFF B
2	0000006947 0000006947	2.5	BRYANT MADELINE	MADELINE D	1)	05/02/1962 05/02/1962	F F	W
3	9000018540 (IFF) 6000008928	∞	SALLY DIFF JOHN	BYRD BYRD	***	07/04/1960 X 04/07/1960	F DIFF M	w ?



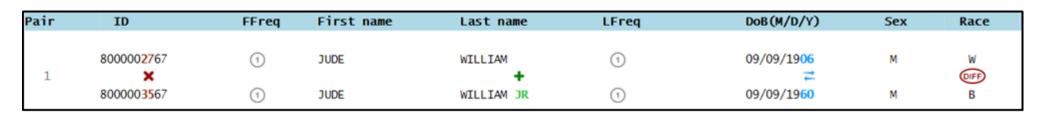
Our approach 2 Minimum Necessary Disclosure

Pair	ID	FFreq	First name	Last name	LFreq	DoB(M/D/Y)	Sex	Race
1	** ** ** ** ** ** 27 ** ** ** ** ** ** ** ** ** ** 35 ** **	1		WILLIAM + WILLIAM JR	① ①	09/09/19 <mark>06 </mark>	M M	W DIFF B
2		2-5	8.	000000000 &&&&&&	•••		F	~ ~
3	QQQQQQQQQQQ QIFF &&&&&&&&&		SALLY DIFF JOHN		•••	07/04/1960 X 04/07/1960	F DIFF M	* ?

Accuracy Score by Disclosure Mode

- We can get comparable results to full mode with only 30% disclosure with appropriate masks (moderate mode)
- As we mask more values for privacy, quality of results start to suffer (p<0.001)
- However, even legally de-identified data with proper masks can be linked properly for most situations
 - 0% disclosure still had 75% accuracy
- Incremental disclosure can significantly improve privacy protection with negligible impact on quality of linkage

Pair	ID	FFreq	First name	Last name	LFreq	DoB(M/D/Y)	Sex	Race
1	京京京京京京((()京京	1	~	****	1	**/**/***	~	@ OIFF
	*****	1	~	3.3 *****	1	**/**/**	~	&


Nothing Opened

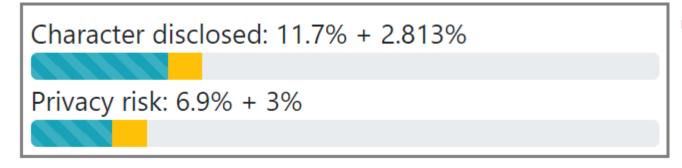
Pair	ID	FFreq	First name	Last name	LFreq	DoB(M/D/Y)	Sex	Race
1	**************************************	① ①		******* ******* ******** *********	1	**/**/**60	M M	@ ©IFF &

Partially Opened

That is open only different characters if not too different

Fully Opened

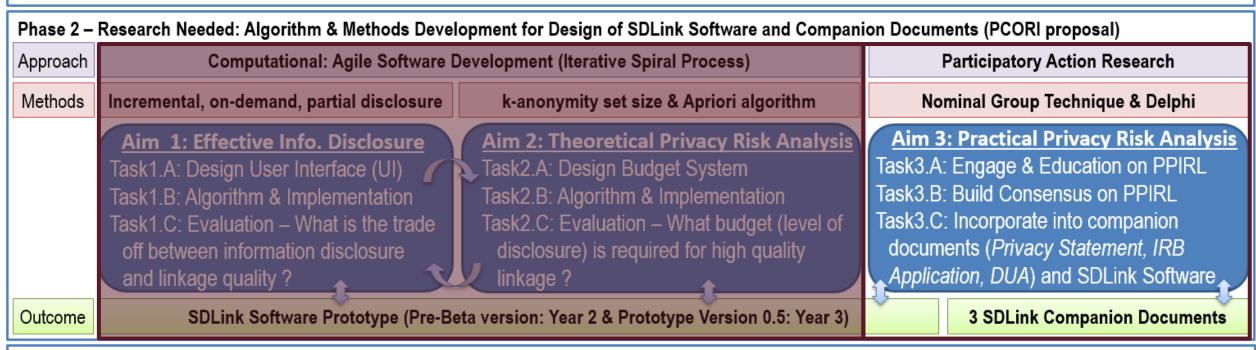
Information Privacy 101: Point two Information Accountability (Transparency) Works


- Secrecy: Hiding information does not support legitimate use
 - In reality, has limited power to protect privacy
 - Severe Consequences related to
 - Accuracy of data and decisions, use of data for
 - legitimate reasons, transparency & democracy
- Information Accountability support effective use (Credit Report)
 - Very clear transparency in the use of the data
 - Disclosure: Declared in writing, so when something goes wrong the right people are held accountable (data use agreements)
 - IT WORKS! Primary method used to protect financial data
 - Internet: crowdsourced auditing (public access IRB)
 - Logs & audits: what to log, how to keep tamperproof log
- D.J. Weitzner et al., Information Accountability, Comm. ACM, vol. 51, no. 6, 2008, pp. 82–87.

Our approach 4 Quantify the Risk: Add privacy risk meter

Pair	ID	FFreq	First name	Last name	LFreq	DoB(M/D/Y)	Sex	Race
1	******27** ** ******35**	1		WILLIAM + WILLIAM JR	1	09/09/19 <mark>06 </mark>	M M	W OIFF B
2		1 2-5	888888	00000000	1)		F	~ ~
3	QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	∞	SALLY OIFF JOHN		***	07/04/1960 X 04/07/1960	F (DIFF) M	* ?

- Protection through transparency
 - Measure how much was disclosed
 - And the actual risk of identification that results from the disclosure


Try it!

- http://ppirl-dev.herokuapp.com/
- http://ppirl-tutorial-g.herokuapp.com/

Aim 3 Outcomes: we need your help! Companion documents

Phase 1 – Completed Framework on Privacy Preserving Interactive Record Linkage (PPIRL): Privacy & Utility Objective

Phase 3 – After Project is Completed: Hardening Code – SDLink Software Development & Release (Collaboration with Kitware Inc.)

Aim 3: Companion Documents for the Software Working with patients and stakeholders

- Privacy Statement
 - In lieu of informed consent: Posted on project websites that use the software
 - Simple language to describe how protection is provided when using the software
- Template IRB applications
 - Good IRB language to describe the risk and benefits when using the software
- Template DUA
 - Good legal language to describe the protection provided by the software

Arthritis Power/Creaky Joints and other PPRNs: Privacy Statement

- Help us convey in plain language to patients
 - How use of PPIRL can enhance privacy
 - What potential risk might still remain when using PPIRL
 - Maybe fundamental risk of doing studies that require record linkage
 - How to interrupt the Privacy Risk Score for a project
 - What patients should know about record linkage projects using PPIRL
 - What might you want to see in an informed consent form (if we could have one)?

Acknowledgements

- Ben Nowell, Global Healthy Living Foundation
- Jeffery Curtis, UAB

ArthritisPower™

Thank you

- Participate in our study:
 - o 4/27 (Friday): 6-8 pm ET
 - https://ppirl-tutorial.herokuapp.com/
- Stay Informed
 - https://pinformatics.org/ppirl/index.php
- Questions?
 - Hye-chung Kum, kum@tamu.edu